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БЕЛГІЛЕУЛЕР МЕН ҚЫСҚАРТУЛАР

	
	–  аралығында үзіліссіз  және  нормалы бөлікті-үзіліссіз функциялар кеңістігі;


	 
	–  нормалы функциялар жүйесінің кеңістігі, мұндағы  үзіліссіз және барлық  үшін ақырлы сол жақты шектері бар функциялар;


	 
	–  нормалы барлық  функциялар жүйесінің кеңістігі, мұндағы  барлық  үшін үзіліссіз;


	 
	–  нормалы барлық  үзіліссіз функциялар кеңістігі.






КІРІСПЕ

Диссертациялық жұмыстың жалпы сипаттамасы. Диссертациялық жұмыс импульс әсерлі интегралдық-дифференциалдық теңдеулер үшін шеттік есептерді зерттеуге және шешуге арналған. 
Зерттеудің өзектілігі импульс әсерлі интегралдық-дифференциалдық теңдеулер белгілі бір уақыт мезеттерінде кенет өзгерістерге ұшырайтын көптеген физикалық жүйелерді модельдеу кезінде жиі кездесетіндіктен және бұл теңдеулер үшін шеттік есептердің шешілімділігін тиімді анықтауға, шешімдерін табуға мүмкіндік беретін жаңа конструктивті әдістерді дамыту қажеттілігінде. 
Импульс әсерлі интегралдық-дифференциалдық теңдеулер популяциялық биологияда, химиялық заттардың таралуында, жылудың таралуында, электромагниттік толқындардың сәулеленуінде және т.б. процестер мен құбылыстарды математикалық модельдеудің тиімді құралы болып табылады. Бұл теңдеулерді зерттеумен көптеген ғалымдар айналысты: D.D. Bainov және P.S. Simeonov (1989), D.D. Bainov және P.S. Simeonov (1993), A.M. Samoilenko және N.A. Perestyk (1995), W.M. Haddad, V. Chellaboina және S.G.Neresov (2006), A.O. Ignat’ev (2008), J.J. Nieto және D. O’Regan (2009), V. Lakshmikantham, J. Li (2012). Соған қарамастан, импульс әсерлі интегралдық-дифференциалдық теңдеулердің шешілімділігі мен олардың шешімдерін құру мәселелері өзекті күйінде қалып отыр. Сондықтан мұндай теңдеулерге арналған шеттік есептерді тиімді зерттеуге және олардың шешімдерін табуға мүмкіндік беретін жаңа конструктивті әдістерді әзірлеу маңызды.
[bookmark: _Hlk211599153]Тақырыптың қазіргі жағдайы. Импульс әсерлі интегралдық-дифференциалдық теңдеулер үшін әртүрлі бастапқы және шеттік есептерді шешілімділікке зерттеуге, шешімдерін табуға көптеген авторлардың еңбектері арналған [1-30]. Бұл есептер жәй дифференциалдық теңдеулер теориясының, математикалық физиканың әртүрлі әдістерімен, сандық және аналитикалық әдістермен шешіледі. Атап айтқанда, жаңа салыстыру және монотонды итерациялық әдісі, вариациялық әдістер. Сонымен қатар, жаңа тәсілдер мен әдістер жасалуда. Дегенмен, импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептердің шешілімділік шарттарын орнату және оларды шешудің тиімді әдістерін әзірлеу ашық күйінде қалып отыр. [31-35] жұмыстарында импульс әсерлі интегралдық-дифференциалдық теңдеулер үшін шеттік есептердің экстремал шешімдерінің бар болуының жеткілікті шарттарын алу үшін жоғарғы және төменгі шешімдер әдісі және монотонды итерациялық әдіс қолданылған. J.L. Li, J. Shen, X. Yang, J.J. Nieto, R. Rodriguez-Lopez жұмыстарында салыстыру және монотонды итерациялық әдістерін қолдану арқылы импульс әсерлі сызықтық емес аралас типті интегралдық-дифференциалдық теңдеулер үшін периодты шеттік есептерінің минималды және максималды шешімдерінің бар болуы шарттары алынды [36-38]. Импульс әсерлі интегралдық-дифференциалдық теңдеулер үшін интегралдық шеттік есептер [39], импульс әсерлі сызықтық емес интегралдық-дифференциалдық теңдеулер үшін интегралдық шартты шеттік есептер [40], екінші ретті импульс әсерлі интегралдық-дифференциалдық теңдеулері үшін екінүктелі шеттік есептер [41] жоғарғы және төменгі шешімдер әдісімен қатар монотонды итерация әдісін қолдану арқылы зерттелген. Импульс әсерлі және максимумдары бар жәй интегралдық-дифференциалдық теңдеулер үшін шеттік есептер [42-46] жұмыстарында зерттелген. Өзегі айныған және максимумдары бар жәй интегралдық-дифференциалдық теңдеулер жүйесі үшін локальды емес шеттік есеп [47] жұмыста қарастырылып, сығылмалы бейнелеулер әдісімен қатар тізбектеп жуықтау әдісі арқылы шеттік есептің шешімінің бар болуы және жалғыздығы дәлелденген. [48] жұмыста өзегі айныған және екі спектрлі параметрлі біртекті екінші ретті Фредгольм интегралдық-дифференциалдық теңдеуі үшін локальды емес шеттік есептің шешілімділігі орнатылды. [49] жұмыста бекітілген уақыт мезеттерінде импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептер Джумабаев параметрлеу әдісі арқылы зерттелді, есеп шешілімділігінің және бірмәнді шешілімділігінің қажетті және жеткілікті шарттары теңдеудің дифференциалдық бөлігінің іргелі матрицасы және аралық Фредгольм интегралдық теңдеуінің резольвентасы арқылы құрастырылған матрица терминдерінде алынды. [50] жұмыста Джумабаев параметрлеу әдісі арқылы импульс әсерлі сызықтық интегралдық-дифференциалдық теңдеулер үшін шеттік есептердің бірмәнді шешілімділігінің жеткілікті шарттары орнатылды. Есептің шешілімділік критерийлері іргелі матрица және аралық Фредгольм интегралдық теңдеуінің резольвентасын қолданбай есептің бастапқы деректері терминдерінде алынды. Сондай-ақ есепті шешу алгоритмі ұсынылды, оның жинақтылық шарттары белгіленді. Импульс әсерлі сызықтық жүктелген дифференциалдық теңдеулері үшін екінүктелі шеттік есептердің шешімдері [51] жұмыста параметрлеу әдісімен табылды.
[52-54] жұмыстарда параметрлеу әдісі арқылы интегралдық-дифференциалдық теңдеулер жүйесі үшін көпнүктелі шеттік есептің бірмәнді шешілімділігінің қажетті және жеткілікті шарттары анықталды. Интегралдық теңдеулер әдісі арқылы Риман-Лиувилль операторлары [55], сондай-ақ гиперболалық және параболалық-гиперболалық операторлары бар [56] жүктелген үшінші ретті интегралдық-дифференциалдық теңдеулер үшін шеттік есептердің бірмәнді шешілімділігі дәлелденді.
[57] жұмыста квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуінің Джумабаев бойынша жалпы шешімі құрылды, бұл жалпы шешімнің бар болуы мен жалғыздығының шарттары алынды және шеттік есепті шешуде қолданылды. Параметрлі сызықтық емес Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің жалғыз шешімінің бар болуының жеткілікті шарттары алынды және сызықтық емес Фредгольм интегралдық-дифференциалдық теңдеуінің Джумабаев бойынша жалпы шешімі ұғымы енгізілді [58]. Вольтерра-Фредгольм интегралдық-дифференциалдық теңдеулері үшін көпнүктелі шеттік есептердің шешімі параметрлеу әдісі арқылы анықталды [59].
Жұмыстың мақсаты: Импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептерді Джумабаев параметрлеу әдісімен зерттеу және оның негізінде шешудің конструктивті әдісін құру.
Зерттеу міндеттері:
а) импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешілімділігін орнату;
ә) импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін Джумабаев бойынша жалпы шешімді құру;
б) Джумабаев бойынша жалпы шешімді импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есепті шешуде қолдану;
в) импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есептің шешілімділігінің қажетті және жеткілікті шарттарын орнату;
г) импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есептің жуық шешімін табудың сандық әдісі мен алгоритмдерін ұсыну;
ғ) импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешілімділігін анықтау;
д) импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін Джумабаев бойынша жалпы шешімді құру;
е) импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есепті Джумабаев бойынша жалпы шешімнің тәуелсіз векторларына қатысты квазисызықтық алгебралық теңдеулер жүйесіне келтіру.
Зерттеу нысаны импульс әсерлі сызықтық және квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулер үшін шеттік есептер.
Зерттеу пәні. Импульс әсерлі сызықтық және квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептердің шешілімділік мәселелері, олардың шешімдерін табудың тиімді алгоритмдерін құру және сандық талдау.
Ғылыми жаңалық.
1. Параметрлері бар импульс әсерлі сызықтық интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебі шешілді.
2. Импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуінің Джумабаев бойынша жалпы шешімі құрылды.
3. Импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есептер Джумабаев бойынша жалпы шешімі арқылы шешілді.
4. Параметрлеу әдісі арқылы импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есептердің шешілімділігінің қажетті және жеткілікті шарттары орнатылды.
5.  Импульс әсерлі сызықтық интегралдық-дифференциалдық теңдеу үшін шеттік есептің шешімін табуға арналған алгоритм ұсынылды және сандық түрде жүзеге асырылды.
6. Параметрлері бар импульс әсерлі квазисызықтық интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебі шешілді.
7. Импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеудің Джумабаев бойынша жалпы шешімі құрылды.
8. Параметрлеу әдісі импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуге арналған шеттік есептерге кеңейтілді.
Қорғауға шығарылатын негізгі нәтижелер: 
– импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешілімділігі;
– импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуінің  жалпы шешімі;
– импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есепті шешудің параметрлеу әдісі;
– импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есептің жуық шешімін табудың сандық әдісі мен алгоритмдері;
– импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешілімділігі;
– импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуінің  жалпы шешімі;
– импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есепке  жалпы шешімінің тәуелсіз векторларына қатысты квазисызықтық алгебралық теңдеулер жүйесін құру.
Зерттеу жұмыстарын жүргізу қажеттігінің негіздемесі. Диссертациялық жұмыста дифференциалдық, интегралдық-дифференциалдық және операторлық теңдеулер теориясының әдістері мен нәтижелері кеңінен қолданылады. Зерттелетін есептерді талдау мен шешудің негізгі әдісі – параметрлеу әдіс.
Зерттеудің теориялық және практикалық маңыздылығы. Диссертация нәтижелері негізінен теориялық сипатқа ие. Жұмыстың ғылыми маңыздылығы – импульс әсерлі интегралдық-дифференциалдық теңдеулер үшін шеттік есептерді зерттеу мен шешудің конструктивті әдістерін әзірлеу.
[bookmark: _Hlk197287868]Диссертациялық жұмыстың басқа ғылыми-зерттеу жұмыстарымен байланысы. Диссертациялық жұмыс «Фредгольм интегро-дифференциалдық теңдеулерінің квазисызықты импульсті жүйелері үшін шеттік есептерді шешу әдістері» (№AP13268824, 2022-2024 жж.) және «Сызықтық емес операторлық теңдеулердің жаңа дамуы және олардың қолданысы» (№АР23485509, 2024-2026жж.) жобалары аясында «Жаратылыстану ғылымдары саласындағы іргелі зерттеулер» басымдығы бойынша гранттық қаржыландыру шеңберінде орындалды. 
Автордың жеке үлесі диссертациялық жұмыста келтірілген барлық нәтижелер автор тарапынан алынды. Ғылыми кеңесшілердің үлесі есептерді қоюдан және алынған нәтижелерді талқылаудан тұрады.
Жұмысты апробациялау. Жұмыстың негізгі нәтижелері келесі іс- шараларда баяндалды және талқыланды:
– Сәуір айындағы дәстүрлі халықаралық ғылыми конференция. Математика және математикалық модельдеу институты. Алматы, Қазақстан (сәуір 2023 ж., сәуір 2024 ж.);
– «Дифференциалдық теңдеулердің заманауи мәселелері және олардың қолданылуы» халықаралық ғылыми конференция, Ташкент, 23-25 қараша 2023 ж.;
– Өзбекстан Ұлттық университетінің Дифференциалдық теңдеулер ғылыми семинары (семинар жетекшісі – физика-математика ғылымдарының докторы, профессор Юлдашев Т.К.);
– Өзбекстан Республикасы Ғылым академиясының В.И. Романовский атындағы Математика институты Дифференциалдық теңдеулер және олардың қолданылуы бөлімінің ғылыми-зерттеу семинары (семинар жетекшісі – физика-математика ғылымдарының докторы, доцент Муминов З.Э.);
– Қазақстан Республикасы Ғылым және жоғары білім министрлігі Математика және математикалық модельдеу ҒЗИ Дифференциалдық теңдеулер және динамикалық жүйелер бөлімінің «Дифференциалдық және интегралдық-дифференциалдық теңдеулердің қазіргі мәселелері» ғылыми-зерттеу семинары (семинар жетекшісі – физика-математика ғылымдарының докторы, профессор Асанова А.Т.);
– Қ. Жұбанов атындағы АӨУ математика кафедрасының «Қолданбалы математика және информатика мәселелері» ғылыми семинары (семинар жетекшісі – физика-математика ғылымдарының докторы, профессор Ж.А. Сартабанов).
Шетелдік тағылымдама 11.09.-20.10.2023 аралығында Өзбекстан Республикасы Ғылым академиясының В.И. Романовский атындағы Математика институтында (Өзбекстан, Ташкент) өтілді. 
Жарияланымдар. Диссертация тақырыбы бойынша 8 жұмыс жарияланды, оның ішінде 2 мақала Scopus және Web of Science мәліметтер базаларында индекстелген рейтингтік ғылыми журналда [69-70], 1 мақала ҚР ҒЖБМ Ғылым және жоғары білім саласындағы сапаны қамтамасыз ету комитеті ұсынатын ғылыми басылымдар тізбесінің 1-Тізіміне енетін ғылыми басылымда [71], 1 мақала Өзбекстан Республикасы Ғылым академиясының В.И. Романовский атындағы Математика институтының ғылыми бюллетенінде [72], 3 жарияланым халықаралық конференция материалдарында [73-75] жарияланды және 1 Авторлық құқықпен қорғалатын объектілерге құқықтардың мемлекеттік тізілімге мәліметтерді енгізу туралы куәлік, Авторлық құқық объектісі: ЭЕМ-ге арналған бағдарлама [76].
Диссертацияның құрылымы мен көлемі. Диссертациялық жұмыс кіріспеден, екі бөлімнен, қорытындыдан, 76 пайдаланылған әдебиеттер тізімінен тұрады. Формулалардың, теоремалардың, леммалардың, анықтамалардың және мысалдардың нөмірленуі үш таңбалы: бірінші сан бөлім нөмірін, екіншісі ішкі бөлім нөмірін, үшіншісі ішкі бөлім ішіндегі формуланың, теореманың, лемманың, анықтама мен мысалдың меншікті нөмірін білдіреді. Диссертациялық жұмыс 90 беттен тұрады.
Диссертацияның қысқаша мазмұны. Диссертацияның бірінші бөлімінде импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептер зерттеледі. 1.1 бөлімшесінде импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешілімділігі қарастырылады









мұндағы  аралығында үзіліссіз матрицалар,   аралығында  нүктелерінде мүмкін үзілістермен бөлікті-үзіліссіз  вектор-функция,    тұрақты матрицалар және   өлшемді тұрақты вектор.
	(0.1), (0.2) жүйенің шешімі (0.1) интегралдық-дифференциалдық теңдеуді, (0.2) импульс әсерлі шарттарды қанағаттандыратын  аралығында бөлікті-үзіліссіз дифференциалданатын  функциясы. 
 функциясының -ші  интервалға тарылуын  арқылы белгілейміз, яғни ,   Анықтылық үшін ішкі интервалдардың сол жақ шеткі нүктелеріндегі  функциясының мәндері оң жақты шектерге тең деп ұйғарамыз, яғни 
Сонымен қатар, егер  функциясы  интервалында бөлікті-үзіліссіз дифференциалданса және  әрбір нүктесі үшін (0.1), (0.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуін қанағаттандырса, онда оның  тарылулар жүйесі келесі интегралдық-дифференциалдық теңдеулер жүйесін қанағаттандырады





 параметрлерін және  жаңа белгісіз функцияларын енгіземіз, әрбір  интервалында  функциясына ауыстыру жасасақ, келесі параметрлі интегралдық-дифференциалдық теңдеулер жүйесін аламыз







1.2 бөлімшесінде (1), (2) импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін Джумабаев бойынша жалпы шешімнің жаңа ұғымы енгізіледі. Жалпы шешім дифференциалдық және интегралдық-дифференциалдық теңдеулерге қатысты әртүрлі есептерді зерттеу мен шешуде маңызды рөл атқарады. 
0.1-анықтама.  функциялар жүйесі (0.4), (0.5) параметрлі Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешімі болса және оның компоненттері келесі



шарттарды қанағаттандырса,   және  теңдіктерімен анықталатын  функциясы (0.1), (0.2) импульс әсерлі интегралдық-дифференциалдық теңдеудің Джумабаев бойынша  жалпы шешімі деп аталады. 
Осылайша әрбір  регулярлы бөліктеуі үшін  функциясы барлық  және   үшін анықталады. (0.3) интегралдық-дифференциалдық теңдеулер жүйесінің (0.4), (0.5) параметрлі арнайы Коши есебіне эквиваленттілігі барлық  және  үшін  функциясы (0.1), (0.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуін қанағаттандырады дегенді білдіреді. Сонымен  жалпы шешім келесі өрнектермен анықталады






0.1-теорема. Егер
а)  регулярлы бөліктеу және  функциясы (0.1), (0.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуінің  жалпы шешімі болса;
ә)  аралығында   нүктелерінде мүмкін үзілістермен бөлікті-үзіліссіз  функциясы берілсе;
б)  функциясының   нүктелерінде мүмкін үзілістермен  аралығында бөлікті-үзіліссіз туындысы бар болса және барлық  үшін (0.2) шартты (0.1) теңдеуін қанағаттандырса;
онда барлық  үшін  теңдігі орындалатын жалғыз  бар болады.
0.1-салдар.  регулярлы бөліктеу,  функциясы (0.1), (0.2) теңдеуінің  жалпы шешімі және  функциясы (0.2) шартты (0.1) Фредгольм интегралдық-дифференциалдық теңдеуінің шешімі болса, онда барлық  үшін  теңдігі орындалатындай жалғыз  бар болады. 
0.1-салдарға сәйкес (0.1), (0.2) жүйенің кез келген шешіміне сәйкес жалғыз  параметр бар болады, осылайша  жалпы шешімі (0.1), (0.2) жүйенің шешіміне сәйкес келеді. (0.1), (0.2) теңдеулер жүйесінің шешімі (0.1), (0.2) жүйесін қанағаттандыратын бөлікті-үзіліссіз дифференциалданатын   функциясына қарағанда,  аралығында бөлікті-үзіліссіз,  нүктелерінде мүмкін үзілістермен  интервалында бөлікті-үзіліссіз дифференциалданады және барлық  үшін (0.1), (0.2) жүйесіне сәйкес келеді. Сондықтан егер  функциясы (0.1), (0.2) жүйенің шешімі болса, онда оның тарылуларынан құралған  функциялар жүйесі (0.2) импульс әсерлі шартты (0.1) теңдеуімен қатар импульс әсері жоқ нүктелерде үзіліссіздік шарттарын да қанағаттандырады: 



 регулярлы бөліктеу және  функциясы (0.1), (0.2) жүйенің  жалпы шешімі деп ұйғарамыз. Осы шешімді қолданып (0.2) импульс шарттары мен (0.3) үзіліссіздік шарттарын келесі түрде жазамыз




 -  жалпы шешімінің (6), (7) түріндегі өрнектерін (9), (10) шарттарына қойып  параметрлі сызықтық алгебралық теңдеулерді аламыз











0.1-лемма. Егер  функциялар жүйесі (0.3) интегралдық-дифференциалдық теңдеулер жүйесінің шешімі болса және   функциялар (0.6) шарттарын қанағаттандырса, онда    және  теңдіктерімен анықталатын  функциясы (0.1), (0.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуінің шешімі болады.
0.2-теорема. (0.1), (0.2) жүйесі шешілімді болуы үшін  векторы  транспонирленген матрицасының өзегіне ортогональ, яғни 



теңдігі кез келген  үшін орындалуы қажетті және жеткілікті, мұндағы   кеңістігіндегі скаляр көбейтінді. 
0.3-теорема. Егер  регулярлы және  матрицасының рангісі -ге тең болса, онда (0.1), (0.2) жүйенің классикалық жалпы шешімі бар болады.
1.3 бөлімшесінде 



шеттік шартымен (0.1), (0.2) импульс жүйесін қарастырамыз. 
 жалпы шешімнің сәйкес мәндерін (0.13) шеттік шартына қойып параметрлері бар сызықтық алгебралық теңдеуді аламыз



 арқылы (0.11), (0.12), (0.14) теңдеулерінің сол жағына сәйкес матрицаны белгілейміз. Сонда (0.11), (0.12), (0.14) теңдеулер жүйесін келесі түрде жазуға болады



мұндағы 





0.2-лемма.  регулярлы бөліктеу және  функциясы (0.1), (0.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеулер жүйесінің Джумабаев бойынша  жалпы шешімі деп ұйғарамыз. 
(a) егер  (0.15) теңдеуінің шешімі болса, онда  функциясы (0.1), (0.2), (0.13) шеттік есебінің шешімі болады.
(ә) егер  (0.1), (0.2), (0.13) шеттік есебінің шешімі және   компоненттерінен тұратын  параметр болса, онда  (0.15) теңдеуінің шешімі болады.
0.4-теорема. (0.1), (0.2), (0.13) есебі шешілімді болуы үшін  векторы  транспонирленген матрицасының өзегіне ортогональ, яғни 



теңдігі кез келген  үшін орындалуы қажетті және жеткілікті, мұндағы   кеңістігіндегі скаляр көбейтінді.
0.2-салдар. (0.1), (0.2), (0.13) есебі бірмәнді шешілімді болуы үшін  матрицасы қайтымды болуы қажетті және жеткілікті.
1.4 бөлімшесінде импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептердің жуық шешімдерін табу алгоритмдері қарастырылады. Джумабаев параметрлеу әдісі (0.1), (0.2), (0.13) импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептерге қолданылады. Алгоритмнің жүзеге асырылуын және орындалуының қарапайымдылығын көрсету үшін мысалдар келтіріледі.
Диссертациялық жұмыстың 2 бөлімінде импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептер зерттеледі. 2.1 бөлімшесінде импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешілімділігін анықтау үшін бекітілген уақыт мезеттерінде импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуін қарастырамыз









мұндағы ,  үзіліссіз функция, 
(0.16), (0.17) жүйенің шешімі (0.16) интегралдық-дифференциалдық теңдеуді, (0.17) импульс әсерлі шарттарын қанағаттандыратын  аралығында бөлікті-үзіліссіз дифференциалданатын  функциясы.
Егер  функциясы (0.16), (0.17) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуін қанағаттандырса және  онда оның  тарылулар жүйесі төмендегі интегралдық-дифференциалдық теңдеулер жүйесін қанағаттандырады





 қосымша параметрлерді енгізу және  функциясын ауыстыру арқылы параметрлі интегралдық-дифференциалдық теңдеулер жүйесін аламыз







(0.19), (0.20) есебі параметрлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебі [64]. 
(0.19), (0.20) есебіне сәйкес сызықтық арнайы Коши есебін қарастырамыз 






A шарты. Келесі теңсіздіктер орындалсын:

 тұрақты;

 мұндағы 





  сандарын таңдаймыз және келесі жиындарды құрамыз:








және


Тұйық аралық интервалдарда келесі арнайы Коши есебін қарастырамыз:







0.5-теорема.  матрицасы қайтымды болсын, 0.1-шарты және келесі теңсіздіктер орындалсын:

  тұрақты, 



 мұндағы



Онда кез келген  үшін  жиынында (0.23), (0.24) арнайы Коши есебінің жалғыз шешімі  функциялар жүйесі бар болады.
0.2-анықтама.  функциялар жүйесі (0.19), (0.20)  параметрлі арнайы Коши есебінің жалғыз шешімі болса және



шарттарды қанағаттандырса, онда    және  теңдіктерімен анықталатын  функциясы (0.16), (0.17) импульс әсерлі квазисызықтық интегралдық-дифференциалдық теңдеудің  жиынындағы Джумабаев бойынша  жалпы шешімі деп аталады.
0.2-анықтама мен 0.5-теоремадан келесі тұжырым шығады. 
0.6-теорема. 0.5-теореманың шарттары орындалса, онда (0.16), (0.17) жүйенің  жиынындағы  жалпы шешімі  функциясы бар және бұл функцияны келесі түрде жазуға болады



[bookmark: _Hlk209285897]және келесі бағалау орындалады



мұндағы     
Диссертацияның 2.3 бөлімшесінде импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептер қойылады және ол  жалпы шешімнің тәуелсіз векторларына қатысты квазисызықтық алгебралық теңдеулер жүйесіне келтіріледі. Бекітілген уақыт мезеттерінде импульс әсерлі (0.16), (0.17) квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуін (0.3) шеттік шартпен қарастырамыз.  регулярлы бөліктеу үшін жалпы шешімнің сәйкес өрнектерін (0.3) шеттік шартқа, (0.17) импульс шарттарына және (0.18) үзіліссіздік шарттарына қоя отырып келесі теңдеулерді аламыз







(0.19), (0.20) арнайы Коши есебінің  жалпы шешімін (0.25) шеттік шартқа (0.26) импульс және (0.27) үзіліссіздік шарттарына қойып, квазисызықтық алгебралық теңдеулер жүйесін аламыз



0.7-теорема. 0.5-теореманың шарттары мен келесі теңсіздіктер орындалсын:

 қайтымды және 










Онда (0.28) квазисызықтық алгебралық теңдеулер жүйесінің  жалғыз шешімі бар болады.



1 ИМПУЛЬС ӘСЕРЛІ СЫЗЫҚТЫҚ ФРЕДГОЛЬМ ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУЛЕРІ ҮШІН ШЕТТІК ЕСЕПТЕР 

1.1 Импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешілімділігі
Бекітілген уақыт мезеттерінде импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуін қарастырамыз









мұндағы   аралығында үзіліссіз матрицалар,   аралығында  нүктелерінде мүмкін үзілістермен бөлікті-үзіліссіз вектор-функция,    тұрақты матрицалар және   өлшемді тұрақты вектор.
Нормасы  болатын  аралығында үзіліссіз  бөлікті-үзіліссіз функциялар кеңістігін  арқылы белгілейміз, яғни

  функциясы

 аралығында үзіліссіз, барлық  үшін  ақырлы шегі бар және 

(1.1.1), (1.1.2) жүйенің шешімі (1.1.1) интегралдық-дифференциалдық теңдеуді, (1.1.2) импульс әсерлі шарттарды қанағаттандыратын  аралығында бөлікті-үзіліссіз дифференциалданатын  функциясы. 
Айталық,  келесі  бөліктеуі болсын, мұндағы  нүктелер жиыны  импульс әсерлі нүктелерді қамтиды және  
Әрбір  бөліктеуі үшін өзара бірмәнді функциялар бар болсын:





барлық  үшін .
 функциясының -ші  интервалға тарылуын  арқылы белгілейміз, яғни ,   Анықтылық үшін ішкі интервалдардың сол жақ шеткі нүктелеріндегі  функциясының мәндері оң жақты шектерге тең деп ұйғарамыз, яғни 
Сонымен қатар, егер  функциясы  интервалында бөлікті-үзіліссіз дифференциалданса және  әрбір нүктесі үшін (1.1.1), (1.1.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуін қанағаттандырса, онда оның  тарылулар жүйесі келесі интегралдық-дифференциалдық теңдеулер жүйесін қанағаттандырады





 арқылы  функциялар жүйесінің кеңістігін белгілейміз, мұндағы  үзіліссіз және барлық  үшін ақырлы сол жақты шектері бар функциялар, кеңістіктің нормасы 
 параметрлерін және  жаңа белгісіз функцияларын енгіземіз, әрбір  интервалында  функциясына ауыстыру жасасақ, келесі параметрлі интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебін аламыз







Бекітілген  параметрдің мәнінде (1.1.4), (1.1.5) арнайы Коши есебінің шешімі деп  болғанда (1.1.4) интегралдық-дифференциалдық теңдеулер жүйесі мен (1.1.5) бастапқы шартты қанағаттандыратын  функциялар жүйесін айтамыз.  интегралдық-дифференциалдық теңдеулер жүйесі (1.1.4), (1.1.5) параметрлі арнайы Коши есебіне келесі мағынада эквивалентті болады. Егер  функциялар жүйесі (1.1.3) жүйенің шешімі болса, онда  функциялар жүйесі, мұндағы , (1.1.4), (1.1.5) арнайы Коши есебінің  параметрлі шешімі болады. Және керісінше,  параметрлі  функциялар жүйесі (1.1.4), (1.1.5) есебінің шешімі болса, онда  элементтерінен тұратын  функциялар жүйесі (1.1.3) интегралдық-дифференциалдық теңдеулер жүйесінің шешімі болады. 
Фредгольм интегралдық-дифференциалдық теңдеуі үшін арнайы Коши есебі Коши есебі секілді әрқашан шешілімді емес. (1.1.4), (1.1.5) арнайы Коши есебінің шешілімділік және бірмәнді шешілімділік шарттары [60] жұмыста орнатылған. 
 әрбір бөліктеуі (1.1.4), (1.1.5) параметрлі арнайы Коши есебін тудырады.
 регулярлы бөліктеу делік [60, 83-бет] және (1.1.4), (1.1.5) жалғыз шешімінің компоненттері келесі түрде анықталсын



мұндағы 





















 интервалындағы  дифференциалдық теңдеуінің іргелі матрицасын  арқылы белгілейміз.  матрицасын қолданып



құрамыз,    өлшемді бірлік матрица,   өлшемді квадрат матрицалар.
1.1.1-анықтама.  матрицасы қайтымды болса,  бөліктеуі (1.1.1) теңдеуі үшін регулярлы бөліктеу деп аталады.

1.2 Импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін Джумабаев бойынша  жалпы шешімін анықтау 
Жалпы шешім дифференциалдық және интегралдық-дифференциалдық теңдеулерге қатысты әртүрлі есептерді зерттеу мен шешуде маңызды рөл атқарады. Осы бөлімшеде (1.1.1), (1.1.2) импульс әсерлері бар сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін Джумабаев бойынша жалпы шешімнің жаңа ұғымы енгізіледі.
1.1 бөлімшеде параметрлеу әдісі арқылы (1.1.1), (1.1.2) интегралдық-дифференциалдық теңдеулері (1.1.4), (1.1.5) параметрлі интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебіне келтірілетіні көрсетілді. (1.1.4), (1.1.5) арнайы Коши есебімен байланысты ескере отырып, келесі анықтаманы ұсынамыз.
1.2.1-анықтама.  функциялар жүйесі (1.1.4), (1.1.5) параметрлі Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешімі болса және оның компоненттері келесі



шарттарды қанағаттандырса,   және  теңдіктерімен анықталатын  функциясы (1.1.1), (1.1.2) импульс әсерлі интегралдық-дифференциалдық теңдеулер жүйесінің Джумабаев бойынша  жалпы шешімі деп аталады. 
Осылайша әрбір  регулярлы бөліктеуі үшін  функциясы барлық  және   үшін анықталады. (1.1.3) интегралдық-дифференциалдық теңдеулер жүйесінің (1.1.4), (1.1.5) параметрлі арнайы Коши есебіне эквиваленттілігі барлық  және  үшін  функциясы (1.1.1), (1.1.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуін қанағаттандырады дегенді білдіреді. Сонымен  жалпы шешім келесі өрнектермен анықталады






1.2.1-теорема. Егер
(а)  регулярлы бөліктеу және  функциясы (1.1.1), (1.1.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуінің  жалпы шешімі болса;
(ә)  аралығында   нүктелерінде мүмкін үзілістермен бөлікті-үзіліссіз  функциясы берілсе;
(б)  функциясының   нүктелерінде мүмкін үзілістермен  аралығында бөлікті-үзіліссіз туындысы бар болса және барлық  үшін (1.1.2) шартты (1.1.1) теңдеуін қанағаттандырса; 
онда барлық  үшін  теңдігі орындалатын жалғыз  бар болады.
Дәлелдеуі.  функциясының -ші  аралықтарына тарылуларынан құралған  функциялар жүйесі (1.1.3) интегралдық-дифференциалдық теңдеулер жүйесінің шешімі екенін оңай көруге болады.  функциясы үшін  параметрін анықтаймыз, мұндағы   (1.1.4), (1.1.5) арнайы Коши есебін  болғанда шешіп,  функциялар жүйесін табамыз.  функциялар жүйесі (1.1.3) теңдеулер жүйесінің шешімі болғандықтан,  функциялар жүйесі бар және жалғыз, оның компоненттері 



шарттарын қанағаттандырады. 1.2.1-анықтамадан,    және  қатынастардан келесі теңдеулер туындайды:





 жалғыз екенін көрсетейік. Біздің тұжырымымызға қарсы, барлық  үшін  орындалатындай басқа  бар деп болжайық. Онда 1.2.1-анықтамаға сәйкес





теңдіктерін аламыз, мұндағы  функциялар жүйесі  болғанда (1.1.4), (1.1.5) параметрлі арнайы Коши есебінің шешімі. Енді (1.1.5) бастапқы шаттарды пайдаланып,   аламыз. 1.2.1-теорема дәлелденді.
1.2.1-салдар.  регулярлы бөліктеу,  функциясы (1.1.1), (1.1.2) теңдеуінің  жалпы шешімі және  функциясы (1.1.2) шартты (1.1.1) Фредгольм интегралдық-дифференциалдық теңдеуінің шешімі болса, онда барлық  үшін  теңдігі орындалатындай жалғыз  бар болады. 
1.2.1-салдарға сәйкес (1.1.1), (1.1.2) жүйенің кез келген шешіміне сәйкес жалғыз  параметр бар болады, осылайша  жалпы шешімі (1.1.1), (1.1.2) жүйенің шешіміне сәйкес келеді. (1.1.1), (1.1.2) теңдеулер жүйесінің шешімі (1.1.1), (1.1.2) жүйесін қанағаттандыратын бөлікті-үзіліссіз дифференциалданатын   функциясына қарағанда,  аралығында бөлікті-үзіліссіз,  нүктелерінде мүмкін үзілістермен  интервалында бөлікті-үзіліссіз дифференциалданады және барлық  үшін (1.1.1), (1.1.2) жүйесіне сәйкес келеді. Сондықтан егер  функциясы (1.1.1), (1.1.2) жүйенің шешімі болса, онда оның тарылуларынан құралған  функциялар жүйесі (1.1.2) импульс әсерлі шартты (1.1.1) теңдеуімен қатар импульс әсері жоқ нүктелерде үзіліссіздік шарттарын да қанағаттандырады:



 регулярлы бөліктеу және  функциясы (1.1.1), (1.1.2) жүйенің  жалпы шешімі деп ұйғарамыз. Осы шешімді қолданып (1.1.2) импульс шарттары мен (1.2.3) үзіліссіздік шарттарын келесі түрде жазамыз





 функциясы мен (1.2.1), (1.2.2) түріндегі  жалпы шешімінің өрнектерін (1.2.4), (1.2.5) шарттарына қойып  параметрлі сызықтық алгебралық теңдеулерді аламыз










 (1.2.6), (1.2.7) жүйенің сол жағына сәйкес матрица болсын және жүйені келесі түрде жазамыз



мұндағы 





Келесі нәтиже кез келген  регулярлы бөліктеу үшін орынды.
1.2.1-лемма. Егер  функциялар жүйесі (1.1.3) интегралдық-дифференциалдық теңдеулер жүйесінің шешімі болса және   функциялар (1.2.3) шарттарын қанағаттандырса, онда    және  теңдіктерімен анықталатын  функциясы (1.1.1), (1.1.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуінің шешімі болады.
1.2.2-теорема. (1.1.1), (1.1.2) жүйесі шешілімді болуы үшін  векторы  транспонирленген матрицасының өзегіне ортогональ, яғни 



теңдігі кез келген  үшін орындалуы қажетті және жеткілікті, мұндағы   кеңістігіндегі скаляр көбейтінді.
Дәлелдеуі. Қажеттілік. (1.1.1), (1.1.2) жүйесі шешілімді және оның шешімі болсын. 1.2.1-анықтамаға сәйкес (1.1.1), (1.1.2) жүйенің жалпы шешімін  түрінде құрамыз. 1.2.1-салдарға сәйкес  векторы бар және ол жалғыз, барлық  үшін .  функциясы (1.1.1), (1.1.2) жүйенің шешімі, демек  үшін де (1.2.3) түріндегі үзіліссіздік шарттары орындалады. Осыдан  (1.2.8) жүйенің шешімі болады. Бұл  шарты орындалған жағдайда ғана мүмкін. Демек,  теңдігі кез келген  үшін орындалуы қажет. Қажеттілік дәлелденді.
Жеткіліктілік.  (1.1.1), (1.1.2) жүйенің  жалпы шешімі болсын және  ортогоналдық шарты орындалсын делік. Онда (1.2.8) жүйенің  шешімі бар болады және 1.2.1-леммаға сәйкес  функциясы (1.1.1), (1.1.2) жүйенің шешімі. Жеткіліктілік дәлелденді.
Демек, (1.1.1), (1.1.2) жүйенің шешілімділігі дәл осы ортогоналдық шартына эквивалентті. Теорема дәлелденді.
1.2.3-теорема. Егер  регулярлы және  матрицасының рангісі -ге тең болса, онда (1.1.1), (1.1.2) жүйенің классикалық жалпы шешімі бар болады.
Дәлелдеуі. (1.2.8)  сызықтық алгебралық теңдеулер жүйесін қарастырамыз.   матрицаның  сызықтық тәуелсіз бағандарынан және  қалған бағандардан құралған  өлшемді матрица болсын.
(1.2.8) жүйесін 



түрінде жазамыз, мұндағы  және   матрицасын жіктеуден алынған  векторының координаттарынан құралған векторлар. Құрылымы бойынша  қайтымды матрица. Демек,  векторы (1.2.9) өрнегіне байланысты бірмәнді анықталады:



 параметрін  кездейсоқ вектор ретінде алайық. (1.2.10) өрнегінен  векторының барлық элементтерін  арқылы анықтаймыз.   үшін сәйкес өрнектерді (1.2.1) және (1.2.2) теңдеулерінің оң жағына қойып,  функциясын шығарамыз. 1.2.1-теорема және 1.2.1-лемма  функциясы (1.1.1), (1.1.2) теңдеуінің классикалық жалпы шешімі екенін айқын көрсетеді. 1.2.3-теорема дәлелденді.
1.2.1-мысал. (1.1.1), (1.1.2) импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық жүйесін келесі берілген мәндерімен қарастырамыз 






 аралығын  импульс нүктесінде екі бөлікке бөлеміз. Есептеулер бойынша  бөліктеуі регулярлы емес болғандықтан,  аралығын тең екі бөлікке бөлеміз және бөліктеуді  арқылы белгейміз:   өлшемді  матрицасы қайтымды, яғни  регулярлы бөліктеу болып табылады. 
(1.2.1), (1.2.2) теңдіктерін қолданып  жалпы шешімін құрамыз


























(1.2.8) жүйенің коэффициенттер матрицасын табамыз:



 болғандықтан, 1.2.3-теоремаға сәйкес (1.2.11) - (1.2.13) берілген мәндерімен (1.1.1), (1.1.2) жүйенің классикалық жалпы шешімін келесі түрде анықтаймыз

 
мұндағы 










1.3 Джумабаев бойынша  жалпы шешімді шеттік есептерді шешуде қолдану



шеттік шартымен (1.1.1), (1.1.2) импульс жүйесін қарастырамыз. 
 жалпы шешімнің сәйкес мәндерін (1.3.1) шеттік шартына қойып параметрлері бар сызықтық алгебралық теңдеуді аламыз



 арқылы (1.2.6), (1.2.7), (1.3.2) теңдеулерінің сол жақтарына сәйкес коэффиценттерінен тұратын матрицаны белгілейміз. Сонда (1.2.6), (1.2.7), (1.3.2) теңдеулер жүйесін келесі түрде жазуға болады



мұндағы 





1.3.1-лемма.  регулярлы бөліктеу және  функциясы (1.1.1), (1.1.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуінің Джумабаев бойынша  жалпы шешімі деп ұйғарамыз.
(a) егер  (1.3.3) теңдеуінің шешімі болса, онда  функциясы (1.1.1), (1.1.2), (1.3.1) шеттік есебінің шешімі болады;
(ә) егер  (1.1.1), (1.1.2), (1.3.1) шеттік есебінің шешімі және   компоненттерінен тұратын  параметр болса, онда  (1.3.3) теңдеуінің шешімі болады.
1.3.1-теорема. (1.1.1), (1.1.2), (1.3.1) есебі шешілімді болуы үшін  векторы  транспонирленген матрицасының өзегіне ортогональ, яғни 


теңдігі кез келген  үшін орындалуы қажетті және жеткілікті, мұндағы   кеңістігіндегі скаляр көбейтінді.
Дәлелдеуі. Қажеттілік. (1.1.1), (1.1.2), (1.3.1) есебі шешімі бар және оның шешімін деп белгілейік. 1.3.1-леммаға сәйкес (1.1.1), (1.1.2), (1.3.1) есебінің жалпы шешімін  түрінде жазуға болады. Сонда  векторы бар және ол жалғыз, сондай-ақ барлық  үшін  теңдігі орындалады.  функциясы (1.1.1), (1.1.2), (1.3.1) есебінің шешімі болғандықтан,   функциясы үшін де (1.2.3) үзіліссіздік шарттары және (1.3.1) шеттік шарт орындалады. Осыдан  (1.3.3) жүйенің шешімі болатыны шығады. Бұл тек  шарты орындалғанда ғана мүмкін. Демек, бұл теңдік кез келген  үшін орындалуы қажет. Қажеттілік дәлелденді.
Жеткіліктілік.  (1.1.1), (1.1.2), (1.3.1) есебінің  жалпы шешімі болсын және  ортогоналдық шарты орындалсын. Онда (1.3.3) жүйенің  шешімі бар. 1.3.1-леммаға сәйкес,  функциясы (1.1.1), (1.1.2), (1.3.1) есебінің шешімі болады. Осылайша жеткіліктілік дәлелденді.
 (1.1.1), (1.1.2), (1.3.1) есебінің шешілімділі болуы аталмыш ортогоналдық шарттың орындалуына эквивалентті екенін көреміз. Теорема дәлелденді.
1.3.1-салдар. (1.1.1), (1.1.2), (1.3.1) есебі бірмәнді шешілімді болуы үшін  матрицасының қайтымды болуы қажетті және жеткілікті.
1.3.1-лемма және 1.3.1-теорема (1.3.3) алгебралық теңдеулер жүйесі мен (1.1.1), (1.1.2), (1.3.1) шеттік есептер үшін орындалады.
1.3.1-мысал. (1.2.11) - (1.2.13) және



берілген мәндерімен (1.1.1), (1.1.2), (1.3.1) шеттік есебін қарастырамыз.
 жалпы шешімнің сәйкес өрнектерін (1.2.6), (1.2.7), (1.3.2) теңдеулеріне қойып,  және  табамыз:





 матрицасы қайтымды болғандықтан, шеттік есептің  жалғыз шешімі бар.
1.3.2-мысал. 








берілген мәндерімен (1.1.1), (1.1.2), (1.3.1) импульсті жүйе үшін шеттік есепті қарастырамыз.
1.2.1-мысалдан  регулярлы бөліктеу және (1.1.1), (1.1.2) жүйенің (1.2.14) - (1.2.16)  шешімі бар екені белгілі. (1.2.8) жүйенің коэффициенттер матрицасын табайық:



 болғандықтан, 1.2.3-теорема бойынша (1.3.4) - (1.3.7) берілген мәндерімен (1.1.1), (1.1.2) жүйенің классикалық жалпы шешімін келесі түрде анықтаймыз



мұндағы 
















 және  табамыз:





 матрицасы қайтымды емес,  және  болғандықтан, шеттік есептің шексіз көп шешімі бар болады және келесі түрде анықталады:



мұндағы














1.4 Импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептердің жуық шешімдерін табу алгоритмдері
Джумабаев параметрлеу әдісін (1.1.1), (1.1.2), (1.3.1) импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есепке қолданып, келесі көпнүктелі параметрлі шеттік есепті аламыз:













(1.1.1), (1.1.2), (1.3.1) шеттік есепті шешудің A алгоритмі. 
1-қадам.  аралығын  импульс нүктелерінде  бөлікке бөліктеуін  деп белгілейміз,  
2-қадам. 



 болғанда аралық Коши есептерін шешу арқылы     функцияларын табамыз.
3-қадам.  өлшемді  матрицасын құрамыз, мұндағы 





 матрицасының қайтымдылығын тексереміз. Егер матрица қайтымды болса, оның кері матрицасын  түрінде жазамыз, мұндағы     өлшемді матрица. Содан соң 4-қадамға өтеміз. Егер  қайтымды емес, яғни  регулярлы емес болса, алгоритмді  бөліктеудің әр ішкі аралығы тең 2 бөлікке бөлінетіндей басқа бөліктеумен, мысалы  қайта бастаймыз.
4-қадам.  және  үшін (1.4.6) аралық Коши есебін шешіп, сәйкесінше  және   функцияларын табамыз.
5-қадам. Келесі интегралдардарды есептейміз





және  өлшемді 



матрицаларын және  векторларын



құрамыз.
6-қадам.



алгебралық теңдеулер жүйесін құрамыз, мұндағы   компоненттері 
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(1.4.7) жүйені шеше отырып,  табамыз.
	  бұл (1.1.1), (1.1.2), (1.3.1) есебінің  шешімінің бөліктеудің ішкі аралықтарындағы сол жақ шеткі нүктелеріндегі мәндері.
7-қадам.  векторының





компоненттерін анықтаймыз және 



функциясын құрамыз. (1.1.1), (1.1.2), (1.3.1) есебінің  шешімінің  ішкі аралықтарына тарылуларын 



Коши есептерін шешу арқылы табамыз.
Егер   іргелі матрицалары белгілі болса, онда (1.1.1), (1.1.2), (1.3.1) шеттік есебінің шешімі 





теңдіктерімен анықталады. Алайда айнымалы коэффициенттері бар сызықтық дифференциалдық теңдеудің іргелі матрицасы үшін айқын түрдегі формуласы жоқ. Сондықтан аралық Коши есептерін сандық шешумен және сандық интегралдаумен жүзеге асырылатын алгоритмнің сандық нұсқасын ұсынамыз.
(1.1.1), (1.1.2), (1.3.1) есебін шешудің сандық B алгоритмі. 
1-қадам.  импульс нүктелерінде  аралығының  бөліктеуін аламыз. Содан соң әрбір  ішкі аралығын   қадаммен  тең бөліктерге бөлеміз.    дискретті мәндерін қабылдайтын  айнымалысын енгіземіз және осы нүктелердің жиынын  арқылы белгілейміз.
2-қадам. (1.4.6) Коши есебінің сандық шешімін тауып,    жиынында  өлшемді  матрицаның мәндерін анықтаймыз.
3-қадам. 



есептеу үшін  және  матрицаларының  жиынындағы мәндерін пайдаланып сандық квадраттық ережені қолданамыз. Содан соң элементтері



болатын  өлшемді   матрицасын құрамыз, мұндағы   матрицасының қайтымдылығын тексереміз. Егер кері матрицасы бар болса   анықтап, 4-қадамға көшеміз. Егер кері матрицасы болмаса, жаңа бөліктеуді таңдаймыз (қадамды алдыңғы қадамнан екі есе аз қылып аламыз) және 1-қадамға ораламыз. 
	4-қадам. ,  болғанда (1.4.6) Коши есептерінің сандық шешімін тауып,   жиынында  мәндерін және  вектор  табамыз. 
5-қадам.  жиынында 





интегралдарын есептейміз. Содан соң





сәйкес теңдіктері арқылы  өлшемді  матрицаларын және   - векторларын құрамыз.
6-қадам. (1.4.8) қолданып



алгебралық теңдеулер жүйесін құрамыз.  матрицасын (1.1.1), (1.1.2), (1.3.1) есебінің бірмәнді шешілімділігін анықтау үшін қолданамыз.  қайтымды және  ұйғарамыз. 4-теорема [61] бойынша егер  болса, онда  қайтымды. Осылайша, 1.3.1-салдар бойынша (1.1.1), (1.1.2), (1.3.1) есебінің жалғыз шешімі болады.
1.4.1-мысал. 







берілген мәндерімен (1.1.1), (1.1.2), (1.3.1) шеттік есебін қарастырайық. Интервалды  импульс нүктесінде екі бөлікке бөлеміз және ішкі аралықтарын  қадаммен бөлу арқылы алгоритмнің сандық жүзеге асырылуын көрсетеміз. Шеттік есептің шешімінің дәлдігі Коши есептерін шешуде қолданылатын әдістердің дәлдігі және анықталған интегралдарды есептеу дәлдігіне байланысты. Коши есептері төртінші ретті Рунге-Кутта және Булирша-Штёра әдістерімен [62, 63] шешіледі, ал анықталған интегралдар Симпсон әдісімен есептеледі.
Берілген есептің дәл шешімі:



және келесі теңсіздіктер орындалады:





мұндағы  және  шеттік есептің сандық шешімдері, мұндағы аралық Коши есептері сәйкесінше төртінші ретті Рунге-Кутта әдісімен және Булирша-Штёра әдісімен шешілді (1.4.1-кесте).
Рунге-Кутта әдісімен алынған нәтижелер Булирша-Штёра әдісіне қарағанда дәлірек болып шықты, себебі жүйенің оң жақ бөлігі тегіс емес ( нүктесінде функцияда импульс әсері бар және сәйкесінше туынды үзілісті). Булирша-Штёра әдісінің дәлдігі жоғары болуы үшін жүйенің оң жақ бөлігі тегіс болуы қажет және ол төртінші ретті Рунге-Кутта әдісіне қарағанда едәуір жоғары дәлдікке қол жеткізуге мүмкіндік береді.
Алайда, есептеу уақыты бойынша Булирша-Штёра әдісі жақсы нәтиже көрсетті 0.113143 секунд, ал Рунге-Кутта әдісінде бұл көрсеткіш 0.130946 секунд болды, яғни Булирша-Штёра әдісі 0.017803 секундқа жылдамырақ орындалды.

1.4.1-кесте – (1.1.1), (1.1.2), (1.3.1) есебінің дәл және сандық шешімдері айырмасы
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1.4.1-сурет – (1.1.1), (1.1.2), (1.3.1) есебінің  - - 
дәл және сандық шешімдері графиктері (бірінші компоненті)
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1.4.2-сурет – (1.1.1), (1.1.2), (1.3.1) есебінің  - - 
дәл және сандық шешімдері графиктері (екінші компоненті)

1.4.2-мысал. 











мұндағы

  

   
  

 


(1.4.13) - (1.4.15) есебінің дәл шешімі



 интервалын    нүктелері арқылы бөліп, (1.4.13) - (1.4.15) есебіне ұсынылған сандық алгоритмді қолданамыз. Анықталған интегралдарды бағалау үшін Симпсон формуласын, аралық Коши есептерін шешу үшін 4-ші ретті Рунге-Кутта, Адамс және Булирша-Штёра әдістерін пайдаланамыз.  үшін осы әдістерді қолданып алгоритмді үш рет қайталаймыз.    арқылы (1.4.13) - (1.4.15) есебінің жуық шешімдерін белгілейміз, мұндағы Коши есептері сәйкесінше осы әдістермен шешіледі.

1.4.2-кесте – (1.4.13) - (1.4.15) есебінің сандық шешімдерінің абсолютті қателіктері
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Қателік бағалаулары  қадамымен кестеде көрсетілген, мұндағы    
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1.4.3-сурет –     дәл және 
сандық шешімдерінің салыстырмалы нәтижелері
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1.4.4-сурет –     дәл және 
сандық шешімдерінің салыстырмалы нәтижелері

1.4.3, 1.4.4-cуреттерде (1.4.13) - (1.4.15) есебінің сандық шешімдерінің салыстырмалы нәтижелері көрсетілген. 
Бұл бөлімде сызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешімінің бар болу шарттары, импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін  жалпы шешімі анықталды. Сондай-ақ классикалық жалпы шешімнің болу шарттары мен теңдеудің шешілімділігіне қойылатын критерийлер де келтірілді. Сызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептердің шешілімділігінің қажетті және жеткілікті шарттары орнатылды. Бұл теориялық нәтижелердің практикалық маңыздылығын көрсететін мысалдар қарастырылды.


2 ИМПУЛЬС ӘСЕРЛІ КВАЗИСЫЗЫҚТЫҚ ФРЕДГОЛЬМ ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУЛЕРІ ҮШІН ШЕТТІК ЕСЕПТЕР

2.1 Импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешілімділігі 
Бекітілген уақыт мезеттерінде импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуін қарастырамыз









мұндағы ,  үзіліссіз функция, 
(2.1.1) интегралдық-дифференциалдық теңдеуді, (2.1.2) импульс әсерлі шарттарын қанағаттандыратын  аралығында бөлікті-үзіліссіз дифференциалданатын  функциясы (2.1.1), (2.1.2) жүйенің шешімі болады.
 векторы және  саны берілсін делік,



жиынын құрамыз, мұндағы  аралығында  және теңдіктерімен анықталатын  бөлікті-тұрақты вектор-функция. 
Егер  функциясы (2.1.1), (2.1.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуін қанағаттандырса және  онда оның  тарылулар жүйесі төмендегі интегралдық-дифференциалдық теңдеулер жүйесін қанағаттандырады





 қосымша параметрлерді енгізу және  функциясын ауыстыру арқылы параметрлі интегралдық-дифференциалдық теңдеулер жүйесін аламыз







(2.1.4), (2.1.5) есебі параметрлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебі [64]. 
Егер  функциялар жүйесі (2.1.3) жүйенің шешімі болса, онда  функциялар жүйесі (2.1.4), (2.1.5) параметрлі арнайы Коши есебінің  болғандағы шешімі болады, мұндағы    Және керісінше, егер  функциялар жүйесі (2.1.4), (2.1.5) параметрлі арнайы Коши есебінің  болғандағы шешімі болса, онда   компоненттерінен тұратын  функциялар жүйесі (2.1.3) интегралдық-дифференциалдық теңдеулер жүйесінің шешімі болады.
(2.1.4), (2.1.5) есебіне сәйкес сызықтық арнайы Коши есебін қарастырамыз 







(2.1.6), (2.1.7) есебінің шешімі параметрдің  бекітілген мәні үшін  функциялар жүйесі болады, мұндағы  функциясы  интервалында  айнымалысы бойынша үзіліссіз дифференциалданады,  үшін (2.1.6) жүйені, (2.1.7) бастапқы шарттарды қанағаттандырады.
[65-67] жұмыстарында сызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің бірмәнді шешілімділігінің критерийлері және оның шешімін табу алгоритмдері ұсынылған.
 матрицасының қайтымдылығы кез келген  және  үшін (2.1.6), (2.1.7) арнайы Коши есебінің жалғыз шешімі  функциялар жүйесінің бар болуын қамтамасыз етеді. Сонымен қатар келесі теңсіздік орындалады



мұндағы  (2.1.6), (2.1.7) арнайы Коши есебінің қисынды шешілімділік тұрақтысы,  және  тәуелсіз;





A шарты. Келесі теңсіздіктер орындалсын:

 тұрақты;

 мұндағы 





  сандарын таңдаймыз және келесі жиындарды құрамыз:









және


Тұйық аралық интервалдарда келесі арнайы Коши есебін қарастырамыз:







Егер  және  функциялар жүйесі сәйкесінше (2.1.4), (2.1.5) және (2.1.8), (2.1.9) есептерінің шешімдері болса, онда бұл шешімдер арасында келесі қатынастар орындалады:





 бекітілген параметр үшін







арнайы Коши есебін аламыз.
2.1.1-теорема.  матрицасы қайтымды болсын, A шарты және келесі теңсіздіктер орындалсын:

  тұрақты, 


 мұндағы



Онда кез келген  үшін  жиынында (2.1.8), (2.1.9) арнайы Коши есебінің жалғыз шешімі  функциялар жүйесі бар болады.
Дәлелдеуі. үшін 







сызықтық арнайы Коши есебінің жалғыз шешімі бар болады және оны  арқылы белгілейміз.  таңдаймыз және 







мұндағы




сызықтық интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есептерін шешу арқылы  функциялар жүйесінің тізбегін құрамыз.
[66, 345-346-б.] жұмысына сәйкес  матрицасы қайтымды болғандықтан (2.1.10), (2.1.11) сызықтық арнайы Коши есебінің  жалғыз шешімінің компоненттері келесі түрде анықталады:





анықталады, мұндағы 



 векторын бағалаймыз







 функциялары  кеңістігіне тиісті екенін оңай көруге болады.  арқылы  функциялар жиынын белгілейміз.









болғандықтан  жиыны  аралығында бірқалыпты шенелген.
(2.1.12) және (2.1.13) сәйкес  нүктелері үшін келесі теңсіздікті аламыз











Сондықтан  функциялары тең дәрежелі үзіліссіз және Арцела теоремасы [68] бойынша әрбір  жиыны компакт жиын болады. 
(2.1.12) теңдеуін 


операторлық теңдеу түрінде жазамыз, мұндағы 













болғандықтан  операторы  жиынын өзіне бейнелейді. Сондықтан Шаудер принципі бойынша  операторының қозғалмайтын нүктесі бар, ол 
Оператордың қозғалмайтын нүктесінің жалғыздығын дәлелдейік.  үшін (2.1.8), (2.1.9) есебінің  басқа шешімі бар деп болжайық, яғни келесі теңдік орындалады:






Онда







және A шартына сәйкес



Теореманың (ii) шарты бойынша барлық  үшін  Осылайша теорема дәлелденді.
 аралығында   болғанда импульс әсерлі жәй дифференциалдық теңдеуді қарастырамыз



мұндағы     тұйық жиын  кеңістігінде шенелген,    
(2.1.14) жүйе үшін локалды емес шарттармен зерттеледі:





 

және берілген импульс әсерлі шарттарда





мұндағы   өлшемді матрица-функциялар,   вектор-функциялар,   сызықтық емес вектор-функциялар,    сәйкесінше оң жақты және сол жақты шектер.
 арқылы  аралығында анықталған және үзіліссіз  вектор-функцияларын қамтитын Банах кеңістігін белгілейік және нормасын



түрінде анықтайық.
 арқылы



түріндегі векторлық кеңістікті белгілейміз, мұндағы  және   бар және шенелген;   Банах кеңістігінің нормасы 



түрде анықталады.
2.1.2-теорема. Келесі шарттар орындалады деп ұйғарайық:

(i) 

(ii) det 

(iii)  

(iv)   

(v)  =

(vi) барлық   үшін   болатындай функция бар және ол үшін келесі теңсіздік орындалады:



(vii) барлық   үшін  болатындай функция бар және ол үшін келесі бағалау орындалады:


(viii) барлық  үшін 

 

(ix) барлық  үшін 



(x) барлық   үшін   

  

(xi) 

Онда екінүктелі шеттік есептің  жалғыз шешімі бар. Бұл шешімді итерациялық процесс арқылы табуға болады:



 аралығында (2.1.15 - 2.1.19) есебінің шешімі берілген  және  вектор-функцияларына үзіліссіз тәуелді.
Импульс әсерлі жәй дифференциалдық теңдеу үшін локалды емес екінүктелі шеттік есебінің шешімінің бар және жалғыз болуын дәлелдеу үшін Банах кеңістігінде біртіндеп жуықтау әдісі мен сығылмалы бейнелеулер әдісінің үйлесімі қолданылды.

2.2 Импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін Джумабаев бойынша  жалпы шешімін анықтау
(2.1.1) теңдеуде  деп алып, сызықтық Фредгольм интегралдық-дифференциалдық теңдеуін қарастырамыз



(2.2.1) теңдеуіне параметрлеу әдісін [66] қолдана отырып,  бөліктеуі үшін интегралдық-дифференциалдық теңдеулер жүйесі үшін параметрлі арнайы Коши есебін аламыз







(2.2.2), (2.2.3) есебінің шешімі параметрдің  бекітілген мәні үшін  функциялар жүйесі болады, мұндағы  функциясы  интервалында  айнымалысы бойынша үзіліссіз дифференциалданады,  үшін (2.2.2) жүйені, (2.2.3) бастапқы шарттарды қанағаттандырады.



элементтерінен тұратын  өлшемді  матрицасын құрамыз.  матрицасы қайтымды деп ұйғарайық және  оның кері матрицасы болсын. 
 матрицасының қайтымдылығы кез келген  және  үшін (2.2.2), (2.2.3) арнайы Коши есебінің жалғыз шешімі  функциялар жүйесінің бар болуын қамтамасыз етеді. Сонымен қатар келесі теңсіздік орындалады



 матрицасы қайтымды болғандықтан, [67] жұмыста алынған нәтижелерге сәйкес (2.2.1) теңдеуінің  жалғыз  жалпы шешімі бар және ол төмендегі өрнектермен анықталады:







 векторы және    сандары берілсін,  аралығында бөлікті-үзіліссіз  функциясын және    компоненттерінен тұратын  функциялар жүйесін таңдаймыз және келесі жиындарды құрамыз:











және


(2.1.1), (2.1.2) жүйенің  жалпы шешімін құру үшін тағы да параметрлеу әдісін қолданамыз.
Егер  функциясы (2.1.1), (2.1.2) импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуін қанағаттандырса және  онда  функциясының  аралығына тарылулары болатын   функциялары төмендегі квазисызықтық интегралдық-дифференциалдық теңдеулер жүйесін қанағаттандырады





және  .
(2.1.4), (2.1.5) есебін операторлық теңдеу түрінде жазамыз және оның шешімін табу үшін итерациялық әдісті қолданамыз.   кеңістіктерін және  сызықтық операторын келесідей енгіземіз:



мұндағы 




 операторының анықталу облысын

 мұндағы  функциялары   аралығында үзіліссіз 

арқылы белгілейміз.  тұйық шенелмеген сызықтық оператор.
Енді (2.1.4), (2.1.5) арнайы Коши есебін квазисызықтық операторлық теңдеуі түрінде жаза аламыз



мұндағы   , .
 индукцияланған нормалы  сызықтық шектелген операторлар кеңістігі болсын. 
Біздің ұйғарымымыз бойынша, (2.2.2), (2.2.3) арнайы Коши есебі  тұрақтысымен қисынды шешілімді, демек  операторы қайтымды және  бағалауы орынды.
2.2.1-анықтама.  функциялар жүйесі (2.1.4), (2.1.5)  параметрлі арнайы Коши есебінің жалғыз шешімі болса және



шарттарды қанағаттандырса, онда    және  теңдіктерімен анықталатын  функциясы (2.1.1), (2.1.2) импульс әсерлі квазисызықтық интегралдық-дифференциалдық теңдеудің  жиынындағы Джумабаев бойынша  жалпы шешімі деп аталады.
2.2.1-анықтама мен 2.1.1-теоремадан келесі тұжырым шығады. 
2.2.1-теорема. 2.1.1-теореманың шарттары орындалса, онда (2.1.1), (2.1.2) жүйенің  жиынындағы  жалпы шешімі  функциясы бар және бұл функцияны келесі түрде жазуға болады



және келесі бағалау орындалады



мұндағы    

2.3 Импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептер және олардың Джумабаев бойынша  жалпы шешіміне қатысты квазисызықтық алгебралық теңдеулер жүйесіне келтірілуі
Бұл бөлімшеде импульс әсерлі квазисызықтық интегралдық-дифференциалдық теңдеулері үшін шеттік есептердің шешілімділігін зерттейміз.
Бекітілген уақыт мезеттерінде импульс әсерлі (2.1.1), (2.1.2) квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуін (1.3.1) шеттік шартпен қарастырамыз.  регулярлы бөліктеу үшін жалпы шешімнің сәйкес өрнектерін (1.3.1) шеттік шартқа, (2.1.2) импульс шарттарына және (1.2.3) үзіліссіздік шарттарына қоя отырып келесі теңдеулерді аламыз







(2.1.4), (2.1.5) арнайы Коши есебінің  жалпы шешімін (2.3.1) шеттік шартқа (2.3.2) импульс және (2.3.3) үзіліссіздік шарттарына қойып, квазисызықтық алгебралық теңдеулер жүйесін аламыз


мұндағы     





мұндағы  арқылы 





аралық Коши есептерінің жалғыз шешімдерін белгілейміз.

































  

 

























мұндағы 




2.3.1-теорема. 2.1.1-теореманың шарттары мен келесі теңсіздіктер орындалсын:

 қайтымды және 











Онда (2.3.4) квазисызықтық алгебралық теңдеулер жүйесінің  жалғыз шешімі бар болады.
Дәлелдеуі. Квазисызықтық алгебралық теңдеулерді шешу үшін итерациялық әдіс қолданылады




Теореманың шарттарынан төмендегі бағалаулар алынады












(2.3.9) - (2.3.11) теңсіздіктері және 2.3.1-теореманың (v) шарты (2.3.8) итерациялық әдістің (2.3.4) теңдеудің  жиынындағы бірмәнді шешімі  векторына жинақтылығын қамтамасыз етеді.
Импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулері үшін шеттік есептердің жуық шешімдерін табу алгоритмі.
0-қадам. a)  үшін (2.1.1), (2.1.2), (1.3.1) есебінің  шешімі [50] жұмыста ұсынылған алгоритм бойынша табылады.  шешімін қолданып  векторы және  функциялар жүйесі құрылады, мұндағы   функциялар жүйесі  үшін  квазисызықтық арнайы Коши есебінің шешіміне бастапқы жуықтау ретінде таңдалады. 
b)







сызықтық арнайы Коши есебінің шешімі келесі формуламен анықталады:











мұндағы 
Бұл итерациялық процесс  шарты орындалғанға дейін жалғасады, мұндағы  алдын ала таңдап алынған сан.
 функциялар жүйесі  квазисызықтық арнайы Коши есебінің  үшін жуық шешімі болады, яғни .
-қадам. a)  қолданып,  табамыз, мұндағы  матрицасы (2.3.4) арқылы анықталады және    вектор-функциялары (2.3.5) - (2.3.7) формулаларымен табылады.
b)





сызықтық арнайы Коши есебінің шешімі келесі формуламен анықталады











мұндағы 



 функциялар жүйесі  квазисызықтық арнайы Коши есебінің  үшін жуық шешімі болады, яғни .
Егер , мұндағы   алдын ала таңдап алынған сан, онда  теңдіктері арқылы (2.1.1), (2.1.2), (1.3.1) есебінің жуық шешімін анықтаймыз, әйтпесе итерациялық процесті жалғастырамыз. 
2.3.1-мысал. 

   
   





берілген мәндерімен (2.1.1), (2.1.2), (1.3.1) шеттік есебін қарастырайық. Интервалды  алты бөлікке бөлеміз және ішкі аралықтарын  қадаммен бөлу арқылы алгоритмнің сандық жүзеге асырылу нәтижесін көрсетеміз. 
(1.1.7) формуланы қолданып келесі матрицаларды анықтаймыз:





 матрицасы қайтымды, яғни  регулярлы бөліктеу болып табылады.
 санын таңдап, 2.1.1-теореманың шарттарының орындалуын көрсетейік:
 шарты:  векторлық функциясы үшін Якоби матрицасы келесі түрде анықталады:



Берілген есептің дәл шешімі:

 

ескеріп, 








Липшиц тұрақтысы келесі түрде анықталады:



 шарты:

















Сондықтан


шарты:
Табылған тұрақтыларды қолданып



мәнін аламыз және 





Демек, арнайы Коши есебінің жалғыз шешімі бар.
[image: ]

2.3.1-сурет – (2.1.1), (2.1.2), (1.3.1) есебінің  дәл шешімі мен
қарапайым итерациялық әдістің 0 - қадамына сәйкес алынған
 сандық шешімдері графиктері

[image: ]

2.3.2-сурет – (2.1.1), (2.1.2), (1.3.1) есебінің  дәл шешімі мен 
қарапайым итерациялық әдістің 1 - қадамына сәйкес алынған
 сандық шешімдері графиктері

[image: ]

2.3.3-сурет – (2.1.1), (2.1.2), (1.3.1) есебінің  дәл шешімі мен 
қарапайым итерациялық әдістің 2 - қадамына сәйкес алынған
 сандық шешімдері графиктері

[image: ]

2.3.4-сурет – (2.1.1), (2.1.2), (1.3.1) есебінің  дәл шешімі мен 
қарапайым итерациялық әдістің 3 - қадамына сәйкес алынған
 сандық шешімдері графиктері

[image: ]

2.3.5-сурет – (2.1.1), (2.1.2), (1.3.1) есебінің  дәл шешімі мен 
қарапайым итерациялық әдістің 4 - қадамына сәйкес алынған
 сандық шешімдері графиктері

(2.3.1) - (2.3.5) суреттерінде    ,  – ішкі интервалдардың нөмірі,  компоненттің реті.
(2.1.1), (2.1.2), (1.3.1) есебінің дәл шешімі мен қарапайым итерациялық әдістің 0, 1, 2, 3 және 4 - қадамдарына сәйкес алынған сандық шешімдері үшін келесі теңсіздіктер орындалады:









2.96021937307156

мұндағы  шеттік есептің сандық шешімдері. Алынған нәтижелерді график түрінде көрсетеміз (2.3.6-сурет).  



[image: ]

2.3.6-сурет – (2.1.1), (2.1.2), (1.3.1) есебінің 
дәл шешімі мен қарапайым итерациялық әдістің 0, 1, 2, 3 және 4 - қадамдарына сәйкес алынған сандық шешімдерінің абсолюттік қателіктерінің графигі



[bookmark: GrindEQpgref5e750d863][bookmark: _Hlk196842154]ҚОРЫТЫНДЫ

Диссертациялық жұмыс импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеулер үшін шеттік есептерді зерттеуге және шешуге арналған. 
Диссертацияның негізгі зерттеу нысаны импульс әсерлі сызықтық және квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулер үшін шеттік есептер.
Негізгі нәтижелер:
– импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешілімділігі анықталды;
– импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін Джумабаев бойынша жалпы шешімі құрылды;
– Джумабаев бойынша жалпы шешім импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есепті шешуде қолданылды;
– импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есептің шешілімділігінің қажетті және жеткілікті шарттары орнатылды;
– импульс әсерлі сызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есептің жуық шешімін табудың сандық әдісі мен алгоритмдері ұсынылды;
– импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеулер жүйесі үшін арнайы Коши есебінің шешілімділігі анықталды;
– импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін Джумабаев бойынша жалпы шешімі құрылды;
– импульс әсерлі квазисызықтық Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есеп Джумабаев бойынша жалпы шешімнің тәуелсіз векторларына қатысты квазисызықтық алгебралық теңдеулер жүйесіне келтірілді.
Қойылған міндеттерді шешу толықтығын бағалау. Импульс әсерлі Фредгольм интегралдық-дифференциалдық теңдеуі үшін шеттік есептің шешілімділігі сұрақтары толық шешілді, олардың жуық шешімдерін табудың сандық әдісі мен тиімді алгоритмдері құрылды.
Зерттеу нәтижелерін нақты қолдану бойынша ұсыныстар. Жұмыста алынған нәтижелер теориялық маңызға ие және Фредгольм интегралдық-дифференциалдық теңдеулер үшін шеттік есептерді шешуде, сондай-ақ университеттердің математика факультеттерінде элективті курстар жүргізу барысында пайдаланылуы мүмкін.
Осы саладағы ең жақсы жетістіктермен салыстырғанда орындалған жұмыстың ғылыми деңгейін бағалау. Орындалған ғылыми жұмыстың нәтижелері ҚР ҒЖБМ Ғылым және жоғары білім саласындағы сапаны қамтамасыз ету комитеті ұсынған журналдарда, халықаралық конференция материалдарында, сондай-ақ Scopus және Web of Science дерекқорларында индекстелетін журналдарда жарияланды.
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