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 Нормативные ссылки 

В данной диссертации использованы ссылки на следующие стандарты:
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ГОСТ 7.9-95 (ISO 214-76). Стандарты по информации, библиотечному и издательскому делу. Реферат и аннотация. Общие требования.
ГОСТ 7.12-93. Стандарты по информации, библиотечному и издательскому делу. Библиографическая запись. Сокращение слов на русском языке. Общие требования и правила.
ГОСТ 8.417-81. Государственная система обеспечения единства измерений.


 
 Обозначения и сокращения 

 мерное пространство, 
 – область в 
 – граница области 
 – цилиндрическая область
 – боковая поверхность 
 – временная переменная
, ,  - натуральные числа
 – дифференциальный оператор
 – пара функций, решение уравнения (задачи) математической физики
 – пара функция, решение уравнения (задачи) математической физики
 – квадратично суммируемые функций в области  по мере Лебега
 – пространство, состоящее из всех функции  и имеющих принадлежащие этому же пространству обобщенные производные по пространственным переменным до второго порядка включительно и по временной переменной  до порядка  включительно


 
 Введение. 

Общая характеристика работы: В данной работе изучается вопрос разрешимости линейной и нелинейной обратной задачи для эволюционных уравнений с вырождением в соболевских классах.
Современное состояние темы и актуальность
Актуальность темы: Обратные задачи для дифференциальных уравнений играют важную роль в различных областях науки и техники, таких как физика, инженерия, биология и медицина. Они позволяют восстанавливать неизвестные параметры или начальные условия системы на основе наблюдений её поведения. Особый интерес представляют линейные и нелинейные обратные задачи для вырождающихся параболических уравнений, поскольку такие уравнения описывают множество важных процессов, включая теплопроводность, диффузию и динамику различных сред.
Параболические уравнения, особенно в их вырождающейся форме, характеризуются наличием особенностей, таких как изменение типа уравнения в зависимости от времени и пространства, что делает задачу их исследования особенно сложной и актуальной. Вырожденные параболические уравнения возникают, например, при описании процессов теплопроводности в средах с фазовыми переходами или в неоднородных материалах, где теплопроводность может стремиться к нулю.
Изучение разрешимости обратных задач для таких уравнений включает в себя разработку методов восстановления коэффициентов уравнения, начальных и граничных условий по заданным данным. Эти задачи обычно формулируются как задачи оптимизации или задачи на экстремумы, что требует применения методов функционального анализа, теории операторов и численных методов.
Основная цель данной диссертационной работы заключается в исследовании разрешимости линейных и нелинейных обратных задач для вырождающихся параболических уравнений. Это включает:
Анализ существующих методов решения обратных задач для вырождающихся параболических уравнений и их обобщение на нелинейные случаи. Разработка новых методов и алгоритмов для решения таких задач, с учётом специфики вырождающихся уравнений. Проведение теоретического анализа разрешимости задач, включая доказательство теорем существования и единственности решений. Применение разработанных методов к практическим задачам, таким как восстановление коэффициентов теплопроводности в неоднородных средах или определение источников тепла в сложных системах.
Таким образом, данная работа направлена на углублённое изучение и развитие методов решения обратных задач для вырождающихся параболических уравнений, что имеет важное теоретическое и практическое значение для различных областей науки и техники.
Наличие в обратных задачах дополнительных неизвестных функций требует, чтобы, помимо граничных условий, естественных для того или иного класса дифференциальных уравнений, задавались также некоторые дополнительные условия - условия переопределения. В настоящей работе будут использоваться условия переопределения, называемые в литературе интегральными условиями переопределения. Обратные коэффициентные задачи, линейные и нелинейные, с интегральными условиями переопределения достаточно хорошо изучены как для классических (эллиптических, параболических и гиперболических), так и для неклассических дифференциальных уравнений. Но для вырождающихся по временной переменной параболических уравнений обратные коэффициентные задачи с интегральным переопределением ранее не изучалась.

Обзор литературы
Изучение обратных задач для дифференциальных уравнений является одной из ключевых областей современного математического анализа и прикладной математики. Обратные задачи позволяют восстанавливать неизвестные параметры или начальные условия системы на основе наблюдений её поведения. В частности, линейные и нелинейные обратные задачи для вырождающихся параболических уравнений представляют значительный интерес, поскольку такие уравнения часто встречаются в моделях теплопроводности, диффузии и других физических процессов.
Среди направлений исследований в области линейных и нелинейных обратных задач для параболических уравнений и систем можно выделить работы таких авторов, как Орловский Д.Г., Денисов А.М., Исаков В., М. Yamamoto, Кожанов А.И., Lorenzi A., Белов Ю.Я., Аниконов Ю.Е., и других (см. [1]-[12]). Развитие методов теорем существовании обратных задач для уравнений Навье - Стокса основанный на предположений об однозначной разрешимости задачи Дирихле Ладыженская О.А., Лионс Ж.Л. и др. при , 1989 году предприняли Васин И. Прилепко А.И., далее в работах Абылкаиров У.У., Айтжанов С.Е. этот подход систематический был применен для уравнений системы тепловой конвекции и др.(см. [4],[27]]-[30]). Также работы посвященные абстрактным эволюционным уравнениям в банаховых пространствах, выполненные Орловским Д.Г., Федоровым В.Е. и другими . В этих работах подробно рассмотрены различные методы и подходы к решению таких задач, что позволяет глубже понять их особенности и возможные приложения.
Что же касается исследований в области вырождающихся дифференциальных уравнений в частных производных и систем можно выделить работы таких авторов, как Олейник О.А., Раткевич Е.В.,Фикера Г., Салахитдинов М.С.,Терсенов С.А., Кальменов Т.Ш., Врагов В.Н., Егоров И.Е., Кожанов А.И., Джамалов С.З.,Камынин В.Л., Иванчов М., Бердышев А.С. и т.д.(см. [13]-[15]).
Многие исследователи занимались разрешимостью прямых задач для вырождающихся дифференциальных уравнений в частных производных. Рассмотрим некоторые из этих результатов более детально в контексте нашей диссертационной работы. В работе [19] исследуются вырождающиеся параболические уравнения с переменным направлением эволюции в различных постановках

	

в котором, функция  может изменять знак произвольным образом и может равняться нулю на подмножествах отрезка  с положительной меры. Функция  неотрицательна на всем отрезке . Доказывается теоремы существований и единственности для рассмотренной задачи.
Присутствие вырождения в дифференциальных уравнений в частных производных подразумевает, что корректные краевые задачи для них могут значительно отличаться от классических начально-краевых задач для невырождающихся уравнений (см. [16]-[19]).
Все построения и рассуждения в работе будут вестись на основе пространств Лебега  и Соболева . Необходимые определения и описание свойств функций из этих пространств можно найти в монографиях [20]-[22].
Несмотря на значительные достижения в области теории и методов решения обратных задач для вырождающихся параболических уравнений, многие вопросы остаются открытыми.
Результаты, полученные в данной диссертации о разрешимости линейных и нелинейных обратных задач для эволюционных уравнений с вырождением, имеют значительную важность и могут быть использованы независимо от других работ в этой области.
Основная цель работы и новизна
Основная цель исследования - это вопросы разрешимости как линейных так и нелинейных обратных задач для эволюционных уравнений с вырождений.
Задачи исследования: 
-доказать разрешимость линейной обратной задачи определения коэффициентов по времени для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
-доказать разрешимость нелинейной обратной задачи определения коэффициентов по времени для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
-доказать разрешимость линейной обратной задачи определения коэффициентов пространственного типа для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
-доказать разрешимость нелинейной обратной задачи определения коэффициентов пространственного типа для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
-доказать единственность решений нелинейной обратной задачи определения коэффициентов пространственного типа для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
-доказать разрешимость нелинейной обратной задачи для сильно вырождающегося параболического уравнения.
- доказать единственность решений обратной задачи для сильно вырождающегося параболического уравнения.
Объект исследования: линейные обратные задачи для эволюционных уравнений с вырождением,а также нелинейные обратные задачи для эволюционных уравнений с вырождением.
Предмет исследования: разрешимость коэффициентных обратных задач в различных постановках для эволюционных уравнений с вырождением.
Методика исследования: В работе используются методы общей теории дифференциальных уравнений в частных производных, математический и функциональный анализ, а также теоремы вложения. Методика доказательства наличия и единственности регулярных решений в задачах базируется на переходе от исходной обратной задачи к новой прямой начальной задаче для соответствующего интегро-дифференциального уравнения. В целях нахождения решения прямой краевой (или начальной) задачи, в работе используются различные методы: метод продолжения по параметру, метод срезывающих функций, метод априорных оценок и метод регуляризации.
Из наличия решения прямой задачи возможно сделать вывод о существовании решения обратной задачи. Из этого следует, что решение прямой задачи необходимо для существования решения обратной задачи, так как обратная задача предполагает восстановление значений уравнения на базе некоторых доступных данных о ее поведении. Если решение прямой задачи существует, то это означает, что данные о поведении уравнения уже известны, и можно попытаться восстановить её параметры, что и является задачей обратной задачи. Однако, это не гарантирует единственности или устойчивости решения обратной задачи. Таким образом, полученные результаты о существовании решений прямых задач являются необходимым фундаментом для рассмотрения обратных задач. Они устанавливают базовую возможность восстановления параметров уравнения из известных данных о его поведении. Это связывает теорию обратных задач с теорией прямых задач и подчеркивает важность понимания обоих аспектов при решении подобных задач.
Научная новизна. Рассматриваемые обратные задачи для вырождающихся дифференциальных уравнений в частных производных в главах §§1.1-1.2, §§2.1-2.2 и §§3.1, §§4.1, ранее не были исследованы, и полученные в этой работе теоремы о разрешимости имеют самостоятельную ценность.
Теоретическая и практическая ценность работы. Результаты диссертации имеют теоретический характер. В ней используется метод срезок для нелинейного уравнения, метод приведение обратной задачи к нагруженному интегро-дифференциальному уравнению, метод регулиризации, априорных оценок, утверждение о существовании и единственности решения обратной задачи для вырождающегося дифференциального уравнения в частных производных, базируется на применении теоремы вложения. Несмотря на теоретический характер проделанной работы, её результаты имеют непосредственное отношение к прикладным задачам, в частности к моделированию распространения эпидемий. В ряде макроскопических моделей эпидемий перенос инфекции описывают уравнениями типа уравнения теплопроводности с диффузионным членом, отвечающим за мобильность населения. В самой общей форме можно рассматривать уравнение 

	

где  — плотность инфицированных,  — коэффициент, моделирующий транспорт (миграцию, перемещения), а  — локальные источники/утилизация. В условиях жесткого карантина мобильность фактически исчезает, что математически соответствует вырождению диффузионного коэффициента ( на некотором подмножестве области) и приводит к вырождающимся уравнениям того типа, которые рассматриваются в настоящей работе.
При этом практическая ситуация осложняется тем, что пространечные данные по заражённости в высокой детализации обычно недоступны; на практике доступны только агрегированные статистики по крупным регионам или по всей стране, т.е. наблюдения имеют вид пространственных интегралов, например 

	

Задача восстановления пространственно-временных параметров (или начальных/граничных условий) по таким интегральным наблюдениям в условиях вырождающегося диффузионного оператора представляет собой естественный прикладной вариант обратной задачи, изученной в диссертации. По нашему знанию, такие прикладные постановки с объединением эффектов вырождения и интегральных наблюдений мало исследованы, что делает направление перспективным для дальнейшей разработки и возможного практического применения при анализе эпидемических данных и оценке эффективности мер мобильности и карантина.
Таким образом, теоретические результаты работы могут послужить методологической основой для решения конкретных прикладных задач в эпидемиологии и других областях, где перенос можно описать вырождающимися диффузионными моделями при наличии лишь агрегированных наблюдений.
Связь настоящей работы с другими научно-исследовательскими проектами:
Работа связана с выполнением следующих научно-исследовательских проектов Комитета науки Министерства науки и высшего образования Республики Казахстан, в которых автор принимала участие в качестве исполнителя:
– проект № AP09057950 на тему «Обратные задачи для линейных и нелинейных уравнений неньютоновской вязкоупругой несжимаемой жидкости 
Кельвина–Фойгта»(2021-2023);
– проект № AP26199323 на тему «Исследование обратных задач для неклассических дифференциальных уравнений»(2025-2027).
Результаты, представленные в диссертации, логически связаны с исследованиями, проводимыми в рамках указанных проектов, и развивают их в направлении изучения обратных задач для параболических уравнений с вырождением и меняющимся направлением эволюции.
Положения, выносимые на защиту. На защиту выносятся:
1) разрешимость линейной обратной задачи определения коэффициентов по времени для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
2) разрешимость нелинейной обратной задачи определения коэффициентов по времени для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
3) разрешимость линейной обратной задачи определения коэффициентов пространственного типа для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
4) разрешимость нелинейной обратной задачи определения коэффициентов пространственного типа для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
5)теоремы единственности решений нелинейных обратных задач определения коэффициентов пространственного типа для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
6) разрешимость нелинейной обратной задачи для сильно вырождающегося параболического уравнения.
7) теоремы единственности решений обратных задач для сильно вырождающегося параболического уравнения.
Достоверность и обоснованность проведенных исследований обеспечивается конструктивностью и систематическим использованием стандартных методов для дифференциальных уравнений частных производных. Подтверждено публикациями, представленными комитетом по контролю в сфере образования и науки Министерства науки и высшего образования Республики Казахстан - а также подтверждается в материалах конференции.
Апробация работы. Результаты диссертации были апробированы на международных конференциях, в том числе на конференциях зарубежья, сделаны доклады на семинарах:
- под руководством профессора, д.ф.-м.н. Кожанова А.И. (Институт математики им. Соболева, Новосибирск),
- под руководством профессора, д.ф.-м.н.,профессора Бердышева А.С.(КазНПУ им. Абая, Алматы),
- международная научная конференция "Традиционная международная апрельская научная конференция в честь казахстанского Дня работников Науки Республики Казахстан 2020" посвященная 1150-летию Абу Насыр аль-Фараби и 75-летию Института математики и математического моделирования(ИМиММ, Алматы),
- международная научно - практическая конференция "Проблемы современной фундаментальной и прикладной математики" посвященная 30-летию независимости РК и 20-летию Казахстанского филиала МГУ имени М.В. Ломоносова (Нур-Султан, 2021),
- международная научная конференция студентов и молодых ученых "Фараби Алеми" (Алматы, 2021),
- "Традиционная международная апрельская научная конференция в честь казахстанского Дня работников Науки 2022"(ИМиММ, Алматы),  - международная научная конференция "Обратные и некорректные задачи в естествознании" (КазНПУ им. Абая, Алматы, 2023),
- международная научная конференция "Обратные и некорректные задачи в естествознании" (КазНПУ им. Абая, Алматы, 2024)
Публикации. Основные результаты по теме диссертации опубликованы в работах [31]-[43] 6 статьей и 6 тезиса. Из них две статьи – в журналах с процентилем более 35, входящих в базу Scopus.
Структура диссертации. Диссертационная работа включает в себя введения, четыре главы, заключение, а также список литературы. Нумерация теорем и формул в главах трехзначные, первое из которых означает номер главы, второе - раздел, а третье собственный номер теоремы или формулы.
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 Обратные задачи определения коэффициентов временного типа для параболического уравнения с меняющим направлением эволюции имеют важное значение как с теоретической, так и с прикладной точки зрения. В данном контексте такие задачи позволяют восстанавливать неизвестные параметры, характеризующие динамику системы, что является критически важным для понимания и прогнозирования поведения сложных физических, химических и биологических процессов.
 Обратные задачи способствуют развитию теории дифференциальных уравнений, особенно в случае параболических уравнений с вырождением и меняющим направлением эволюции. Они помогают выявить новые свойства решений, улучшить понимание структуры уравнений и разработать более общие и мощные методы их анализа.
 Обратные задачи часто являются некорректно поставленными, что требует разработки специальных методов регуляризации и анализа устойчивости решений. Исследование этих аспектов обогащает теорию некорректных задач и методы функционального анализа.
 Понимание того, как временные коэффициенты влияют на эволюцию системы, позволяет глубже понять механизмы, лежащие в основе процессов, описываемых параболическими уравнениями. Это включает исследование условий существования и единственности решений, а также поведения решений в различных режимах.
 Параболические уравнения с меняющим направлением эволюции описывают широкий спектр реальных явлений, таких как фазовые переходы в материалах, теплопроводность в неоднородных средах и процессы диффузии. Определение временных коэффициентов позволяет создавать более точные модели этих процессов, что важно для прогнозирования и управления ими.
 В инженерии, особенно в теплотехнике и материаловедении, важно знать точные значения коэффициентов, описывающих теплопроводность, диффузию и другие свойства материалов. Обратные задачи позволяют экспериментально определять эти коэффициенты, что улучшает дизайн и оптимизацию инженерных систем.
 В медицине и биологии параболические уравнения применяются для моделирования распространения тепла в тканях, распространения веществ в биологических системах и других процессов. Определение временных коэффициентов помогает в диагностике заболеваний, разработке методов лечения и понимании биологических механизмов.
 В экологии и климатологии параболические уравнения используются для моделирования тепловых и химических процессов в атмосфере, океанах и почве. Обратные задачи позволяют уточнять модели на основе наблюдательных данных, что способствует более точным прогнозам изменений климата и состояния окружающей среды.
Решение обратных задач требует создания эффективных численных методов и алгоритмов. Это стимулирует развитие вычислительных методов, таких как методы регуляризации, численные методы решения дифференциальных уравнений и алгоритмы машинного обучения.
 Таким образом, линейные и нелинейные обратные задачи определения коэффициентов временного типа для параболического уравнения с меняющим направлением эволюции имеют значительное теоретическое и практическое значение. Они способствуют развитию фундаментальной теории дифференциальных уравнений, улучшению математического моделирования и решению актуальных прикладных задач в различных областях науки и техники.
 В данной главе изучается разрешимость некоторых обратных задач нахождения вместе с решением вырождающегося параболического уравнения также некоторого коэффициента самого уравнения. Если искомый неизвестный коэффициент определяет свободный член (внешнее воздействие) в уравнении,то подобная обратная задача будет линейной, если же неизветный коэффициент является множителем при той или иной производной решения, то нелинейной. В настоящей работе будут изучаться как линейные, так и нелинейные обратные задачи.
Изучаемые в главе задачи будут иметь две особенности.Первой из них является то, что будут изучаться обратные коэффициентные задачи для вырождающихся по временной переменной параболических уравнений. Второй же особенностью является то, что неизвестный коэффициент в наших задачах также будет функцией лишь от временной переменной.
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 Положим  - ограниченная область из пространства  с гладкой (для простоты - бесконечно - дифференцируемой) границей ,  - цилиндр  переменные  конечной высоты ,  - боковая граница .
Далее пусть  и  - заданные функции, определенные при ,  соответственно.
(  - оператор Лапласа по переменным )
Обратная задача 1.1.1: найти функции  и , связанные в цилиндре  уравнением

		(1.1.1)

при выполнении для функции  условий

		(1.1.2)
 
		(1.1.3)

Обратная задача 1.1.2: найти функции  и , связанные в цилиндре  уравнением  (1.1.1), при выполнении для функции  условий  (1.1.2) и  (1.1.3), а также условия

		(1.1.4)

Обратные задачи  1.1.1 и  1.1.2 являются линейными обратными задачами для параболического уравнения. Заметим, что в задаче  1.1.1 нет граничных условий по переменной , в задаче  1.1.2 - наоборот, задается два граничных условия по переменной . Обе этих ситуации не представляются характерными для дифференциальных уравнений первого порядка (по временной переменной), тем не менее для каждой из них будут указаны достаточные условия, обеспечивающие существование и единственность регулярных решений соответствующих обратных задач.
Введем некоторые обозначения
Положим

	

	

	

	

Далее, по заданной функции  определим функции  и :

	

	
Для функции  из пространства  имеют место неравенства

		(1.1.5)
 с числом ,определяющимся лишь областью  - см. [20]-[22]. Эти неравенства и собственно число  нам понадобятся ниже.
Помимо числа , нам понадобятся также следующие числа:

	

	

	

Теорема 1.1.1 Пусть выполняются условия

		(1.1.6)


		(1.1.7)


		(1.1.8)


		(1.1.9)


		(1.1.10)


		(1.1.11)

Тогда для любой функции  такой, что , обратная задача имеет решение  такое, что .
Доказательство.Рассмотрим краевую задачу: найти функцию ,являющуюся в цилиндре  решением уравнения.

		(1.1.12)

 и такую, что для нее выполняется условие  (1.1.2). В этой задаче уравнение  (1.1.12) представляет собой вырождающееся параболическое интегро-дифференциальное уравнение (подобные уравнения называют также "нагруженными" [23]-[24]); разрешимость ее в пространстве  докажем с помощью метода регулиризации и метода продолжения по параметру.
Пусть  есть положительное число. Рассмотрим краевую задачу: найти функцию , являющуюся в цилиндре  решением уравнения

		
		(1.1.13)

 и такую, что для нее выполняются условие (1.1.2), а также условие

		(1.1.14)

Данная задача представляет собой смешанную краевую задачу для эллиптического (невырождающегося) "нагруженного" уравнения (1.1.13); разрешимость ее в пространстве  нетрудно показать с помощью метода продолжения по параметру [25].
Пусть  есть число из отрезка [0;1]. Рассмотрим семейство задач: найти функцию , являющуюся в цилиндре  решением уравнение

			(1.1.15)

 и такую, что для нее выполняются условия (1.1.2) и (1.1.14).
Краевая задача (1.1.15), (1.1.2), (1.1.14) в случае  при фиксированном  и при выполнении условий теоремы разрешима в пространстве  для любой функции , принадлежащей пространству - см.[21]. Далее, интегрируя по частям в равенстве

	

		(1.1.16)

 (являющемся следствием уравнения (1.1.15)), используя условия (1.1.6)-(1.1.11) и применяя неравенства Гельдера и Юнга, нетрудно получить, что для всевозможных решений  краевой задачи (1.1.15)), (1.1.2)),(1.1.14)) выполняется оценка

		(1.1.17)

 с постояной , определяющейся лишь функциями , а также областью .
Рассмотрим теперь равенство 

	

		(1.1.18)

Вновь интегрируя по частям, используя условия (1.1.6)-(1.111) и добавляя дополнительные элементы, благодаря сопоставлению неравенства Гельдера и Юнга, мы можем сделать вывод о том, что всевозможные решения  краевой задачи (1.1.15), (1.1.2),(1.1.14)можно получить результат, соответствующий требованиям:

		(1.1.19)

 постояная  в которой определяется функциями  и , областью , а также числом .
Из оценок (1.1.17) и (1.1.19), а также из второго основного неравенства для эллиптических операторов [21] вытекает, что для решений  краевой задачи (1.1.15)), (1.1.2)),(1.1.14)) выполняется оценка

		(1.1.20)

 постояная  в которой определяется функциями  и , областью , а также числом .
Из этой оценки, из разрешимости в пространстве  задачи (1.1.15)), (1.1.2)),(1.1.14)) в случае , а также из теоремы о методе продолжения по параметру [25, гл. III,§14] следует, что при фиксированном , при произвольном  из отрезка [0,1] и при выполнении условий (9)-(14) краевая задача (1.1.15)), (1.1.2)),(1.1.14)) будет разрешима в пространстве  для любой функции  из пространства .
Из этой оценки, разрешимости в пространстве  задачи (1.1.15)), (1.1.2)),(1.1.14)) в случае , а также из теоремы о методе продолжения по параметру [25, гл. III,§14] следует, что при фиксированном , при произвольном  из отрезка  и при выполнении условий (9)-(14) краевая задача (1.1.15)), (1.1.2)),(1.1.14)) будет разрешима в пространстве  для любой функции  из пространства .
Пусть  есть последователность положительных чисел, сходящаяся к нулю. Согласно оказанному выше, краевая задача (1.1.15)), (1.1.2)),(1.1.14)) в случае  и  имеет решение , принадлежащее пространству . Для семейства  имеет место равномерная по  априорная оценка (1.1.17). Далее, в правой части равенства (1.1.18) с  выполним интегрирование по частям по переменной . Используя далее условия теоремы и применяя неравенства Гельдера и Юнга, получим, что для функций  будет выполняться оценка

		(1.1.21)

 постоянная  в которой определяется лишь функциями  и  а также областью .
Оценки (1.1.17) и (1.1.21) для функций , свойство рефлексивности гильбертова пространства [25], а также теоремы вложения [20]-[22] означают, что существуют функции  и  такие, что при  имеют место сходимости

 

,
. 

Из этих сходимостей, а также из представления

  

 следует, что для предельной функции  будет выполняться уравнение (1.1.12). Принадлежность функции  пространству  очевидна.
Положим 
  

 Очевидно, что функции  и  связаны в цилиндре  уравнением (1.1.1). Покажем, что для функции  выполняется условие (1.1.3).
Умножим уравнение (1.1.1) с определенной выше функцией  на функцию  и проинтегрируем по области . Учитывая вид функций  и , получается, что для функции , определенной равенством

 , 

выполняется уравнение

 

 Умножив это уравнение на функцию  и проинтегрировав по отрезку  , получим

 . 

 Отсюда и следует, что для функции , являющейся решением краевой задачи (1.1.12), (1.1.2) выполняется условие переопределения (1.1.3).
Все сказанное выше и означает, что найденные функции  и  дают искомое решение обратной задачи 1.1.1.
Теорема доказана.
Для обратной задачи 1.1.2 имеет место аналогичный результат.

Теорема 1.1.2. Пусть выполняются условие

		(1.1.22)
  а также условия (1.1.7)-(1.1.11). Тогда для любой функции  такой, что , ,  при  обратная задача 1.1.2 имеет решение , такое, что .
Доказательство этой теоремы проводится в целом вполне аналогично доказательству теоремы 1.1.1, отличие состоит лишь в том, что в краевой задаче для уравнения (1.1.13) задаются не условия (1.1.2) и (1.1.14), а условия (1.1.2) и (1.1.4).
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Обратная задача 1.2.1: найти функции  и ,связанные в цилиндре  уравнением

		(1.2.1)

при выполнении для функции  условия  (1.1.2), а также условий

		(1.2.2)


		(1.2.3)
 
Данная соответствует обычной первой начально-краевой задаче для параболических уравнений второго порядка, неоднородность условий (1.1.2) и (1.2.3) объясняется нелинейностью задачи.
Исследование разрешимости нелинейной обратной задачи 1.2.1 также будет проведено с помощью перехода к интегро-дифференциальным (нагруженным) уравнениям.
Положим 

	


Теорема 1.2.1. 
 Пусть выполняются условия

		(1.2.4)


		(1.2.5)


		(1.2.6)


		(1.2.7)


		(1.2.8)


		(1.2.9)

тогда обратная задача 1.2.1 имеет решение  такое, что 
Доказательство. Пусть  есть последовательность положительных чисел, сходящаяся к 0. Обозначим . Далее, определим срезывающую функцию  

  

Пусть  есть число из промежутка . 
Рассмотрим краевую задачу:найти функцию , являющуюся в цилиндре  решением уравнения

			(1.2.10)

 и такую, что для нее выполняются условия (1.1.2) и (1.2.2), а также условие

		(1.2.11)

	В этой задаче уравнение (1.2.10) при фиксированном  представляет собой невырождающееся параболическое уравнение четвертого порядка с ограниченной нелинейностью в младшем члене. Используя стандартные энергетические оценки для параболических уравнений [26], метод Галеркина или метод неподвижной точки, нетрудно установить, что задача (1.2.10), (1.1.2) ,(1.2.2), (1.2.11) имеет решение , принадлежащее пространству . Покажем, что с помощью функций  можно найти решение обратной задачи.
Умножим уравнение (1.2.10) на функцию  и проинтегрируем по области  и по временной переменной от 0 до текущей точки. После интегрирования по частям и переобозначения переменных получим равенство

		(1.2.12)

Вследствие условий (1.2.4),(1.2.5) и (1.2.7) все слагаемые левой части этого равенства неотрицательны. Применяя к первому слагаемому правой части (1.2) неравенство Юнга и неравенство (1.1.5), учитывая также условие (1.2.6), получим, что для функций  при  выполняется оценка

		(1.2.13)

 Анализируя последовательно равенства, полученные после умножения уравнения (1.2) на функции ,  с последующим интегрированием по области  и по временной переменной от 0 до текущей точки, получим после использования условий (1.2.4)-(1.2.7), также неравенства Гельдера и неравенства (1.2.13), что для функций  выполняется оценка

			(1.2.14)

с постоянной , определяющейся лишь функциями  и , а также областью  и числом . Для получения последней необходимой оценки умножим уравнение (1.2) на функцию  и проинтегрируем по цилиндру . После несложных преобразований с использованием условий теоремы, нравенства Гелдера и оценок (1.2.13) и (1.2.14) получим, что для функции  выполняется неравенство

		(1.2.15)

 с постоянной , определяющейся лишь функциями  и , а также областью  и числом . Уточним значение числа : . При таком выборе числа  из оценки  и условия  следует, что в уравнений  выполняется . Далее, из оценок (1.2)-(1.2.15) и из свойства рефлексивности гильбертова пространства, а также из теорем вложения следует, что существуют подпоследовательность  из последовательности решений краевой задачи (1.2), (1.1.2), (1.2.2), (1.2.11), а также функция  такие, что при  имеют место сходимости:

 ,


 . 

Положим 

		(1.2.16)


		(1.2.17)
 
Очевидно, что для функции  и для определенной равенством (1.2.16) функции  в цилиндре  выполняется уравнение (1.2.1). Далее, для функции  выполняются условия (1.1.2) и (1.2.2). Покажем, что для функции  выполняется условие переопределения (1.2.3). Умножим уравнение (1.2.1) на функцию  и проинтегрируем по области . Сопоставляя полученное равенство с равенством (1.2.16), придем к уравнению для функции :

		(1.2.18)

Поскольку функция  ограничена на отрезке  функция  принадлежит пространству , то (1.2.18) можно записать в виде 

  

Умножая последнее равенство на функцию  и интегрируя, придем к равенству

		(1.2.19)

Так как функция  неотрицательна на отрезке  и  (вследствие условия (1.2.9)), то из (1.2.19) вытекает, что  есть тождественно нулевая на отрезке  функция.
Равенство нулю функции  и формула (1.2.17) и означают, что для найденной функции  выполняется условие переопределения (1.2.3).
Итак, для определенных выше функций  и  выполняется уравнение (1.2.1), выполняются краевые условия (1.1.2) и (1.2.2), а также условие переопределения (1.2.3). Принадлежность функций  и  требуемым классам вытекает из априорных оценок (1.2)-(1.2.15). Следовательно, эти функции и дадут искомое решение обратной задачи  1.2.1.
Теорема доказана.




[bookmark: GrindEQpgref68f0ab2c4]1.3  Примеры

 В качестве примера для линейной задачи
1.  для выполнения условия (1.1.8) достаточно выполнения неравенств 

	

	
т.е. число  должно быть большим. А условие (1.1.11) ( т.е. ) будет выполняться, если  есть малое число ( т.е. область  мала).
2.  и число  такая, что 
В этом случае функция  может менять знак на отрезке  (если  велико). для выполнений условий теоремы, нам достаточно, чтобы выполнялось .
3. Для других случаев можно аналогичные примеры строить. Например  c малым положительным числом , чтобы выполнялось . Далее возьмем  таким, чтобы , c помощью большого числа  добиться выполнения неравенств (1.1.8).
4. Давайте покажем, что в случае нелинейной задачи множество исходных данных, для которых выполняются все условия теоремы, не пусто.
Пусть , , ,  и  есть функции из пространства , положительные в . Далее, пусть  есть положительное число число, для которого справедливо неравенство 
	
Если теперь  есть произвольная убывающая на отрезке  непрерывно-дифференцируемая функция такая, что 
	
 и  есть функции  и , , то все условия теоремы будут выполняться для достаточно малых чисел .


 
[bookmark: GrindEQpgref68f0ab2c5]2  Обратные задачи определения коэффициентов пространственного для параболического уравнения с меняющимся направлением эволюций

 Изучение задач по восстановлению пространственных коэффициентов в параболических уравнениях с изменяющимся направлением эволюции является чрезвычайно важным и востребованным в современной науке и технике. Исследование таких задач способствует расширению существующих методов анализа дифференциальных уравнений. Это позволяет лучше понимать структуру решений и развивать новые техники для изучения сложных систем.
 Многие задачи по восстановлению параметров являются некорректно поставленными. Поиск эффективных методов стабилизации и решения таких задач представляет собой серьезный вызов для математиков и стимулирует развитие новых теорий и подходов.
 В инженерной практике точные значения параметров, таких как теплопроводность и диффузия в материалах, критически важны для проектирования и оптимизации систем. Знание этих параметров позволяет моделировать и прогнозировать поведение сложных конструкций под различными условиями.
 Таким образом, исследование задач по восстановлению пространственных коэффициентов в параболических уравнениях с изменяющимся направлением эволюции представляет собой актуальное и перспективное направление, имеющее значительное теоретическое и прикладное значение. Это направление способствует развитию математической теории, решению практических задач в инженерии, медицине и экологии, а также стимулирует технологические инновации в области вычислительных методов и интеграции данных.
 В данной главе будет предполагаться, что неизвестный коэффициент является функцией от пространственной переменной ( и именно поэтому изучаемые задачи названы обратными задачами пространственного типа). Далее, основными условиями переопределения, используемыми в теории обратных коэффициентных задач пространственного типа для параболических уравнений, являются условие финального (промежуточного) переопределения, или условие интегрального переопределения. Задачи именно с такими условиями переопределения и будут изучаться в этой главе.
 Основным отличием изучаемых здесь задач от задач, изученных предшественниками, будет то, что дифференциальным уравнением, правая часть которого или же коэффициент являются неизвестными, будет параболическое уравнение с меняющимся произвольным образом направление эволюции.
 Обратные коэффициентные задачи пространственного типа для параболических уравнений, как линейные, так и нелинейные, представляются достаточно хорошо изученными - см. статьи [1]-[8], монографии [9]-[13]. Что же касается подобных же обратных задач для параболических уравнений с меняющимся направлением эволюции, то здесь, наоборот, каких-либо результатов нет.

[bookmark: GrindEQpgref68f0ab2c6]2.1  Разрешимость линейных обратных задач для параболических уравнений с меняющимся направлением эволюции

 Пусть  и  есть заданные функции, определенные при .
Обратная задача 2.1.1: найти функции  и , связанные в прямоугольнике  уравнением 

		(2.1.1)

 при выполнении для функции  условий

		(2.1.2)


		(2.1.3)

Обратная задача 2.1.2: найти функции  и , связанные в прямоугольнике  уравнением (2.1.1), при выполнении для функции  условий (2.1.3) и 

		(2.1.4)

 Исследование разрешимости обратных задач будет основано на переходе к нагруженным дифференциальным уравнениям и на методе регулиризации.


	

	

	

	
Теорема 2.1.1. Пусть выполняются условия

	

	

	

	

	
Тогда для любой функции  такой, что    обратная задача 2.1.1 имеет решение  такое, что . 

Доказательство. Пусть  есть положительное число. Рассмотрим краевую задачу: найти функцию , являющуюся в прямоугольнике Q решением уравнения 

			(2.1.5)

 и такую, что для нее выполняются условия 

		(2.1.6)

 а также условие (2.1.2). Разрешимость этой задачи в классе регулярных решений докажем с помощью метода продолжения по параметру. 
 Пусть  есть число из отрезка [0,1]. Рассмотрим краевую задачу: найти функцию , являющуюся в прямоугольнике  решением уравнения.

			(2.1.7)

и такую, что для нее выполняются условия (2.1.2) и (2.1.6).
Данная краевая задача при , при фиксированном  и при принадлежности функции  пространтства  (что имеет место) имеет решение  так что . Чтобы эта же задача имела бы решение из такого же класса при всех  из отрезка [0,1], достаточно показать, что для всевозможных регулярных решений краевой задачи (2.1.7),(2.1.2),(2.1.6) выполняется априорная оценка

		(2.1.8)

 с постоянной , не зависящей от функции  и от числа .
Покажем, что требуемая оценка (2.1.8) действительно имеет место.
Умножим уравнение (2.1.7) на функцию  и проинтегрируем по прямоугольнику . Получим равенство

			(2.1.9)

Оценим последнее слагаемое правой части этого равенства: 

	

Учитывая эту оценку и используя условия теоремы, получим, что следствием (2.1.9) будет неравенство

			(2.1.10)

Квадратичная форма, образованная первыми тремя слагаемыми левой части этого неравенства, положительно определена. Применяя далее к правой части неравенство Юнга, получим, что следствием равенства (34) будет априорная оценка решений  краевой задачи (2.1.7),(2.1.2),(2.1.6):

		(2.1.11)

 постоянная  в которой не зависит от функции  и от числа .
На следующем шаге рассмотрим равенство 

	

		(2.1.12)

Интегрируя по частям, используя условия теоремы и применяя оценку (2.1.11), получим вторую априорную оценку решений  краевой задачи (2.1.7),(2.1.2),(2.1.6):

			(2.1.13)

 постоянная  в которой не зависит от функции  и от числа .
Из оценок (2.1.11) и (2.1.13) очевидным образом вытекает требуемая априорная оценка (2.1.8) решений  краевой задачи (2.1.7),(2.1.2),(2.1.6) (при фиксированном ).
Как уже говорилось выше, из разрешимости краевой задачи (2.1.7),(2.1.2),(2.1.6) при  и из оценки (2.1.8) следует, что краевая задача (2.1.7),(2.1.2),(2.1.6) при фиксированным  имеет решение  такое, что . Покажем, что при выполнении условий теоремы для решений  краевой задачи (2.1.7),(2.1.2),(2.1.6) имеют место априорные оценки, равномерные по  и такие, что из них будет следовать возможность осуществления процедуры слабого предельного перехода.
Прежде всего заметим, что в оценке (2.1.11) решений  краевой задачи (2.1.7),(2.1.2),(2.1.6), справедливой и для решений задачи (2.1.7),(2.1.2),(2.1.6), постоянная  не зависит от . Далее, чтобы получить вторую равномерную по  оценку, в равенстве (2.1.12) при  в правой части выполним интегрирование по частям по переменной . Применяя теперь неравенство Юнга и используя первую априорную оценку, получим, что имеет место оценка


		(2.1.14)

с постоянной , не зависящий от .
Оценки (2.1.11) и (2.1.14) позволяют стандартным образом выбрать последовательность, слабо сходящуюся к решению  уравнения 

		(2.1.15)

 удовлетворяющему условиям (2.1.2) и (2.1.3), причем для этого решения .
Уравнение (2.1.15) можно записать в виде 

	

Интегрируя, получим, что для функции  выполняется равенство

		(2.1.16)

Определим функцию : 

	

Очевидно, что функции  и  будут связаны в прямоугольнике  уравнением (2.1.1). Принадлежность функции  пространству  очевидна. Следовательно, найденные функции  и  дадут требуемое решение обратной задачи 2.1.1.
Теорема доказана.
Теорема 2.1.2. Пусть выполняются условия

	

	

	

	

	

Тогда для любой функции  такой, что    обратная задача 2.1.2 имеет решение  такое, что .

Доказательство. Рассмотрим вспомогательную краевую задачу: найти функцию  являющуюся в прямоугольнике  решением уравнения (2.1.5) и такую, что для нее выполняются условие (2.1.2), а также условие

	

Повторяя рассуждения, проведенные при доказательстве теоремы 5, нетрудно показать, что эта задача имеет решение  такое, что . Далее, определим функцию :

	

Очевидно, что функции  и  будут связаны в прямоугольнике  уравнением (2.1.1), и что функции  и  принадлежат требуемым классам.
Положим в уравнении (2.1.1)  (это возможно). Получим для функции  равенство

	

Из этого равенства и условия  следует, что для функции  выполняется условие (2.1.5).
Все сказанные выше и означают, что функции  и  дают требуемое решение обратной задачи 2.1.2.
Теорема доказана.

[bookmark: GrindEQpgref68f0ab2c7]2.2  Разрешимость нелинейных обратных задач для параболических уравнений с меняющимся направлением эволюции.

 Пусть  есть интервал (0,1) оси ,  есть прямоугольник , ,  и -заданные функции, определенные при 
Обратная задача 2.2.1: найти функции  и , связанные в прямоугольнике  уравнением 

		(2.2.1)

при выполнении для функции  условий

		(2.2.2)


		(2.2.3)

Обратная задача 2.2.2: найти функции  и , связанные в прямоугольнике  уравнением (2.2.1) при выполнении для функции  условий (2.2.2) и (2.2.3), а также условия 

		(2.2.4)

Обратная задача 2.2.3: найти функции  и , связанные в прямоугольнике  уравнением (2.2.1) при выполнении для функции  условий (2.2.2), (2.2.3)и (2.2.4), а также условия 

		(2.2.5)

 Введем некоторые обозначения
Для функций  из пространтсва  имеет место неравенство 

		(2.2.6)

 в котором  есть произвольное положительное число,  есть произвольная точка множества . Это неравенство будет неоднократно использоваться ниже.
Положим 
	

Пусть  есть фиксированное число из интервала ,  и  есть числа 
	

Определим функцию  

	

Далее, по заданной функции  определим функцию  

	

Теорема 2.2.1. Пусть выполняются условия 
		(2.2.7)
 
		(2.2.8)
 
		(2.2.9)
 
		(2.2.10)
 
		(2.2.11)
 Тогда обратная задача 2.2.1 имеет решение  такое, что ,,  

Доказательство. Воспользуемся методом регуляризации и методом срезок.
Положим 

	

Определим срезывающую функцию  

 

Далее, обозначим через  дифференциальный оператор, действие которого на заданной функции  определяется равенством 
	
Пусть  есть положительное число,  есть оператор

	

Рассмотрим краевую задачу: найти функцию  являющуюся в прямоугольнике  решением уравнения 

		(2.2.12)

 и такую, что для нее выполняется условие (2.2.2), а также условие 

		(2.2.13)

В этой задаче уравнение (2.2.12) представляет собой нагруженное эллиптическое уравнение с ограниченной липшицевой нелинейностью, краевые условия (2.2.2) и (2.2.13) представляют собой условия второй краевой задачи. Используя метод неподвижной точки и теорему Шаудера, учитывая положительность числа  и неотрицательность функции  применяя теоремы вложения, нетрудно установить, что при выполнении условий (2.2.7) и (2.2.8), а также при принадлежности функции  пространству  краевая задача (2.2.12),(2.2.2), (2.2.13) имеет решение  принадлежащее пространтсву . Покажем, что для всевозможных решений рассматриваемой задачи имеют место априорные оценки, с помощью которых можно будет организовать процедуру предельного перехода, получить разрешимость краевой задачи с условием (2.2.2) для уравнения (2.2.12) в случае  и в конечном итоге установить существование регулярного решения обратной задачи 2.2.1.
Умножим уравнение (2.2.12) и функцию  и проинтегрируем по прямоугольнику . Используя краевые условия (2.2.2) и (2.2.13), учитывая неотрицательность функции  и применяя неравенство Гельдера, получим, что для решений  краевой задачи (2.2.12),(2.2.2), (2.2.13) имеют место оценки

		(2.2.14)

 На следующем шаге умножим уравнение (2.2.12) на функцию -  и проинтегрируем по прямоугольнику . Повторяя предыдущие выкладки, получим, что для решений  краевой задачи (2.2.12),(2.2.2), (2.2.13) выполняются оценки 
		(2.2.15)
 
		(2.2.16)
 Еще одна оценка 
		(2.2.17)
 постоянная  в которой определяется функциями  и , очевидным образом вытекает из условий теоремы и оценок (2.2.14)-(2.2.16).
Выберем последовательность  положительных чисел такую, что при  при . Обозначим через  решение краевой задачи (2.2.12),(2.2.2), (2.2.13) при . Для семейства  имеют место априорные оценки (2.2.14)-(2.2.17). Эти оценки, свойство рефлексивности гильбертова пространства и теоремы вложения означают, что существуют последовательность  натуральных чисел и функция  такие, что при  имеют место сходимости

	

	

	

	

	

	
Эти сходимости вместе вместе с представлением 
	
означают, что предельная функция  будет решением уравнения

		(2.2.18)

Имеет место следующая цепочка неравенств: 
	

	
Подберем число  так, чтобы последний множитель стал минимальным - то есть так, чтобы выполнялось . Получим оценку 
		(2.2.19)

Из этой оценки и из условия (2.2.10) следует, что выполняется равенство .
Определим функцию : 
		(2.2.20)

Из доказанного выше равенства  и из уравнения (2.2.18) следует, что функции  и  связаны в прямоугольнике  уравнением (2.2.1). Покажем, что для функции  выполняется условие переопределения (2.2.3).
Умножим уравнение (2.2.18) на функцию  и проинтегрируем по отрезку . Получим равенство

	
С другой стороны, из (2.2.20) следует равенство 
	
Отсюда 
		(2.2.21)

Заметим, что функция  строго положительна:  при . Но тогда из (2.2.21), условий (2.2.2) и (2.2.11) следует

	
А это и означает, что для функции  определенной как решение краевой задачи (2.2.18), (2.2.2) выполняется условие (2.2.3). Следовательно, эта функция и будет искомым решением обратной задачи 2.2.1.
Теорема доказана.

Теорема 2.2.2. Пусть выполняются условия (2.2.8), (2.2.10) и (2.2.11), а также условия 

		(2.2.22)
 
		(2.2.23)

 Тогда обратная задача 2.2.1 имеет решение  такое, что ,,  
Для доказательства данной теоремы также воспользуемся методом регуляризации и методом срезок.
Рассмотрим краевую задачу: найти функцию  являющуюся в прямоугольнике  решением уравнения 

		(2.2.24)

 и такую, что для нее выполняется условие (2.2.2), (2.2.4), а также условие 

		(2.2.25)

В этой задаче уравнение (2.2.24) представляет собой нагруженное эллиптическое уравнение с ограниченной липшицевой нелинейностью. Используя метод неподвижной точки и теорему Шаудера, учитывая положительность числа  и неотрицательность функции  применяя теоремы вложения, можно установить, что при выполнении условий (2.2.10) и (2.2.8), а также при принадлежности функции  пространству  краевая задача (2.2.24),(2.2.2), (2.2.4),(2.2.25) имеет решение  принадлежащее пространтсву . Покажем, что для всевозможных решений рассматриваемой задачи имеют место априорные оценки, с помощью которых можно будет организовать процедуру предельного перехода, получить разрешимость начально - краевой задачи с условием (2.2.2) и (2.2.4) для уравнения (2.2.24) в случае  и в конечном итоге установить существование регулярного решения обратной задачи 2.2.2.
Умножим уравнение (2.2.24) и функцию  и проинтегрируем по прямоугольнику . Используя начально - краевые условия (2.2.2), (2.2.4) и (2.2.25), учитывая неотрицательность функции  и применяя неравенство Гельдера, получим, что для решений  начально - краевой задачи (2.2.24),(2.2.2),(2.2.4) и (2.2.25) имеют место оценки

		(2.2.26)

 На следующем шаге умножим уравнение (2.2.24) на функцию -  и проинтегрируем по прямоугольнику . Повторяя предыдущие выкладки, получим, что для решений  краевой задачи (2.2.24),(2.2.2), (2.2.4) и (2.2.25) выполняются оценки 

		(2.2.27)
 
		(2.2.28)

 Еще одна оценка 

		(2.2.29)

 постоянная  в которой определяется функциями  и , очевидным образом вытекает из условий теоремы и оценок (2.2.26)-(2.2.28).
Выберем последовательность  положительных чисел такую, что при  при . Обозначим через  решение краевой задачи (2.2.24),(2.2.2),(2.2.4) (2.2.25) при . Для семейства  имеют место априорные оценки (2.2.26)-(2.2.29). Эти оценки, свойство рефлексивности гильбертова пространства и теоремы вложения означают, что существуют последовательность  натуральных чисел и функция  такие, что при  имеют место сходимости

	

	

	

	

	

	
Эти сходимости вместе вместе с представлением 
	

означают, что предельная функция  будет решением уравнения

		(2.2.30)

Из оценки 

		(2.2.31)

а также из условия (2.2.10) следует, что выполняется равенство .
Определим функцию : 

		(2.2.32)

Из доказанного выше равенства  и из уравнения (2.2.30) следует, что функции  и  связаны в прямоугольнике  уравнением (2.2.1). Покажем, что для функции  выполняется условие переопределения (2.2.3).
Умножим уравнение (2.2.30) на функцию  и проинтегрируем по отрезку . Получим равенство

	

С другой стороны, из (2.2.32) следует равенство 

	

Отсюда 

		(2.2.33)

Заметим, что функция  строго положительна:  при . Но тогда из (2.2.33), условий (2.2.2),(2.2.4) и (2.2.11) следует

	

А это и означает, что для функции  определенной как решение краевой задачи (2.2.30), (2.2.2), (2.2.4) выполняется условие (2.2.3). Следовательно, эта функция и будет искомым решением обратной задачи 2.2.2.
Теорема доказана.

 Перейдем к исследованию разрешимости обратной задачи 2.2.3.
По заданной функции  определим функцию

	

Положим 
	

Теорема 2.2.3.
	Пусть выполняются условия (2.2.8), (2.2.11) а также условия

		(2.2.34)
 
		(2.2.35)
 
		(2.2.36)

 Тогда обратная задача 2.2.3 имеет решение  такое, что ,,а также  

Доказательство. Рассмотрим краевую задачу: найти функцию  являющуюся в прямоугольнике  решением уравнения 
		(2.2.37)

 и такую, что для нее выполняются условия (2.2.2),(2.2.4) и (2.2.5). Эта задача при фиксированном положительном  представляет собой краевую задачу со смешанными граничными условиями для нагруженного эллиптического уравнения с ограниченной липшицевой нелинейностью; разрешимость ее в пространстве  нетрудно установить с помощью теоремы Шаудера.
Для решений  задачи (2.2.37), (2.2.2), (2.2.4), (2.2.5) имеют место априорные оценки (2.2.14)-(2.2.17). Эти оценки позволяют стандартным образом (см. доказательство теоремы 1) организовать процедуру предельного перехода и получить существование краевой задачи с условиями (2.2.2), (2.2.4) и (2.2.5)для уравнения 

		(2.2.38)

Для функции  имеет место оценка

	

Из этой оценки и из условия (2.2.36) следует, что для уравнения (2.2.38) выполняется . Определим функцию :

	

Очевидно, что функции  и  дадут искомое решение обратной задачи 2.2.3.
Теорема доказана.
Перейдем к доказательствам единственности.
Положим

	

	




Определим множество  
	

	


Теорема 2.2.4. Пусть выполняются условия (2.2.7)-(2.2.9), а также условия 
	

	
Тогда любые два решения  и  такие, что , , совпадают.
Доказательство. Пусть  ,  есть два решения обратной задачи I такие, что 
Положим  Имеет место равенство 
	

	
Умножим это равенство на функцию  и проинтегрируем по прямоугольнику . Учитывая принадлежность функции  множеству , а также принадлежность числа  промежутку , получим, что следствием данного равенства будет неравенство 
	
Применяя далее неравенство Гельдера и учитывая принадлежность функции  множеству  получим, что для функции  выполняется неравенство

	
Из этого неравенства и из последнего условия теоремы вытекает, что  есть тождественно нулевая в  функция. А это и означает, что функии  и ,  и  совпадают в  и в  соответственно.
Теорема доказана. 
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Пример к обратной задаче 2.1.1. Рассмотрим область , .
Зададим функции 

	
Тогда , причём , .
Кроме того, 

	

а также , . Для выбранной функции  имеем . Очевидно, , поэтому неравенство 

	

выполнено при , . Функция  удовлетворяет .

Покажем, что при этих данных обратная задача (2.1.1) имеет решение. Положим 
	
Тогда 
	

и подставим в уравнение (2.1.1): 

	


	
 Таким образом,  удовлетворяет уравнению (2.1.1), а также краевым условиям (2.1.2) и начальному условию (2.1.3): 

	
 Следовательно, для выбранных функций , , ,  все условия теоремы 2.1.1 выполнены, и обратная задача 2.1.1 имеет решение 

	

Пример к обратной задаче 2.1.2.
Положим ,  и зададим функции 

	

	

	

 Проверим выполнение условий теоремы 2.1.2.

1. . При  и  имеем , а в точке : 

	

т.е.  обнуляется при  (вырождение внутри отрезка времени).
2. . Производная 

	

Тогда 
	

	

Следовательно можно взять , , и оба неравенства ,  выполнены на всём . Кроме того 

, , .
3. Для  имеем 

	

и , . Таким образом выполняются условия на .
4. По определениям (как в формулировке теоремы): 

	

	

5. Проверка ключевого неравенства: 

	

6. Выбранная функция 

	

принадлежит , её производные , причём 
	
так как присутствует множитель .
 Построим решение. Пусть 
	
Тогда , , . Подстановка в уравнение (2.1.1) даёт условие 
	
которое выполняется для выбранных . Следовательно пара 
	
является решением обратной задачи 2.1.2; все условия теоремы выполнены, причем  имеет точку вырождения .
Пример к обратной задаче 2.2.1. Пусть , . Зададим 
	

	
Проверим условия теоремы 2.2.1.
1. . При  имеем , при  имеем  (то есть  меняет знак на ).
2. , причём  на  и 
	
3. .

4.  и .
5. Посчитаем параметры: 
	

	
Выберем константу  из интервала , например 
	
Тогда 
	

	
6. Вычислим . Поскольку , , , имеем 
	
В условиях теоремы (неравенство (2.2.10)) требуется 
	
Подставим наши данные: , , поэтому правая часть равна нулю, и неравенство сводится к 
	
что выполняется (равенство).
Также проверим условие, указанное в теореме для :  выполнено (так как ).
Следовательно, все условия теоремы 2.2.1 выполнены при выбранных функциях.

Явное решение. Возьмём 
	
Проверим уравнение (2.2.1) и условия:
- Краевые условия:  (т.к.  постоянна). - Условие (2.2.3): . - Подстановка в уравнение: 
	
Следовательно уравнение выполнено.
Наконец,  (константа),  (равно нулю),  и  на .
Таким образом, пара 
	
даёт явное решение обратной задачи 2.2.1 и все условия теоремы 2.2.1 выполнены.
Пример задачи с функцией , обнуляющейся в нескольких точках
Рассмотрим обратную задачу 
		(2.3.1)
 
		(2.3.2)

Выберем функции и параметры: 
	
Функция  обращается в нуль в трёх точках: 
	
то есть уравнение (2.3.1) вырождается в трёх моментах времени .
Для пространственной части положим 
	
Возьмём решение, не зависящее от времени: 
	
Тогда , и правая часть уравнения (2.3.1) имеет вид 
	
Вычислим: 
	
Проверка условий теоремы:  
    1.  , , . 
    2.  ,  на , . 
    3.  , причём . 
    4.  . 
    5.  Для  имеем 
	
При  и  получаем , следовательно, условие выполнено. 

Дополнительная проверка параметра : 
	
Условие  выполняется при .
Таким образом, выбранные функции  задают корректный пример обратной задачи с вырождением в нескольких точках времени .
Отметим, что условия теорем разрешимости могут выполняться для ряда достаточно простых классов функций. Так, условие (2.2.10) теорем разрешимости нелинейных задач выполняется, например, для функции , зависящей только от переменной  и положительной в , а также для положительной на отрезке  функции  при выполнении неравенства  с достаточно большим числом .
 Аналогично, условие (2.2.36) теоремы 2.2.3 выполняется, например, для аналогичных функций  и  при достаточно малой по модулю функции .
 Условие  теорем 2.1.1 и 2.1.2 выполняется, в частности, в случае достаточно большой положительной функции , определённой в области .
Приведенные примеры означают, что при выполнении нужных условий гладкости и положительности функций  или  множество входных данных обратных задач, для которых выполняются все условия теорем существования, не пусто.
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Обратные задачи для параболических уравнений являются важной и активно развивающейся областью исследования в математической физике и прикладной математике. Эти задачи часто возникают в контексте моделирования процессов, где требуется восстановить исходные условия или параметры системы на основе наблюдений ее поведения в некоторый момент времени. В данной главе рассматриваются вопросы разрешимости обратных задач для сильно вырождающихся параболических уравнений в пространстве Соболева.
Изучаемые в данной главе задачи относятся к классу нелинейных обратных коэффициентных задач временного типа для параболических уравнений (термин "временного типа" в данном случае означает, что неизвестный коэффициент зависит лишь от одной выделенной - временной - переменной). Степень новизны полученных ниже результатов определяется прежде всего тем, что основное уравнение в данной работе является вырождающимся.
Существование решения: Вопрос существования решений обратной задачи тесно связан с корректностью прямой задачи. Если прямая задача корректна в пространстве Соболева, то и обратная задача может иметь решение при определённых дополнительных условиях на данные.
Единственность решения: Единственность решения обратной задачи обычно требует дополнительных априорных ограничений на неизвестные функции. Часто эти ограничения выражаются в виде условий монотонности или других физических свойств системы.
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  Пусть  есть ограниченная область с гладкой (для простоты - бесконечно - дифференцируемой) границей ,  есть цилиндр  конечной высоты ,  есть боковая граница ,  и  есть заданные функции, определенные при 
Обратная задача 3.1.1: найти функции  и , связанные в цилиндре  уравнением 
		(3.1.1)

при выполнении для функции  условий 
		(3.1.2)


		(3.1.3)
 ( -вектор внутренней нормали и  в текущей точке ), 
		(3.1.4)

Обратная задача 3.1.2: найти функции  и , связанные в цилиндре  уравнением (3.1.1) при выполнении для функции  условий и (3.1.2),(3.1.3) а также условия

		(3.1.5)

В обратных задачах 3.1.1 и 3.1.2 будет предполагаться, что функция  неотрицательна при  - именно это предположение и означает, что уравнение (3.1.1) может вырождаться. Далее условия (3.1.2) и (3.1.3) представляются условиями обычной второй начально - краевой задачи для параболических уравнений второго порядка (условие (3.1.3) есть хорошо известное условие непротекания), условия же (3.1.4) и (3.1.5) являются условиями интегрального переопределения - соответственно внутреннего интегрального переопределения и граничного интегрального переопределения.
 Положим 
 






Теорема 3.1.1. Пусть выполняются условия 

	

	

	

	
а также одно из условий
а) 
или
б) 
Тогда обратная задача 3.1.1 имеет решение {u(x,t),q(t)} такое, что , , , , 
Доказательство. Воспользуемся методом регуляризации и методом срезок.
 Пусть  есть функция

	
 Далее, для положительного числа  рассмотрим задачу: найти функцию , являющуюся в прямоугольнике  решением уравнения

		(3.1.6)
 и такую, что для нее выполняются условия (3.1.2) и (3.1.3), а также условие

		(3.1.7)
 Данная задача представляет собой вторую начально - краевую задачу для нелинейного "нагруженного" параболического уравнения четвертого порядка. Поскольку в этом уравнении для функции  выполняется условие Липщица, то краевая задача (3.1.6),(3.1.2),(3.1.3),(3.1.7) при фиксированном  и при принадлежности функции пространству  имеет решение  такое, что , . Покажем, что при выполнении условий теоремы для решений имеют место равномерные по оценки, позволяющие в семействе задач (3.1.6),(3.1.2),(3.1.3),(3.1.7) организовать процедуру предельного перехода.
Рассмотрим равенство 
	
Интегрируя по частям, это равенство нетрудно преобразовать к виду

	

		(3.1.8)


	
Заметим, что предпоследнее слагаемое в левой части (3.1.8) неотрицательно. Если выполняется условие а), то вследствие равенства

	
из (3.1.8) вытекает оценка

		(3.1.9)

Далее, если выполняется условие б), то имеет место равенство

	
с помощью этого равенства из (3.1.8) нетрудно вывести оценки

		(3.1.10)


		(3.1.11)


		(3.1.12)

Из оценки (3.1.9) при выполнении условия а), или из оценок (3.1.10)-(3.1.12) при выполнении условия б) вытекает последняя требуемая оценка

		(3.1.13)
 постоянная  в которой определяется постоянной  или постоянными  и .
Из оценок (3.1.9) или (3.1.11), а также из последнего неравенства условий а) или б) следует, что выполняется равенство

		(3.1.14)

Далее, полученные априорные оценки (3.1.9)-(3.1.13), равенство (3.1.14) и свойства рефлексивности гильбертова пространства позволяют найти последовательность  положительных чисел такую, что  при  последовательность  решений краевой задачи (3.1.6),(3.1.2),(3.1.3),(3.1.7) с  а также функцию  такие, что при  имеет место слабая в пространстве  сходимость

	
Очевидно, что функция  будет принадлежать требуемому в теореме классу, и что функции  и , определенная равенством

	
будут связаны в цилиндре  уравнением (3.1.1).
Покажем, что для функции  выполняется условие переопределения (3.1.4).
Умножим уравнение (3.1.6*) на функцию  и проинтегрируем по области .

	
Получим равенство 
	
Используя равенство (*) и условия теоремы, нетрудно получить

	
Все сказанное выше и означает, что пара  представляет собой искомое решение обратной задачи 3.1.1.
Теорема доказана.
Обсудим вопрос о единственности решений обратной задачи 3.1.1.
Обозначим через  множество функции  таких, что , , 



Теорема 3.1.2. Пусть выполняются условия 

	

	

Тогда любые два решения  и  обратной задачи 3.1.1., принадлежащие множеству ,совпадают.

Доказательство. Обозначим . Для функции , , имеют место равенства 

	

Следовательно, для функции  выполняется уравнение

	

Умножим это уравнение на функцию - и проинтегрируем по пространственным переменным по области  и по временной переменной от 0 до текущей точки. Получим равенство

	

	

Оценивая правую часть этого равенства с помощью неравенства Гельдера, придем к оценке

	
в которой число  определяется функциями , ,  и . Из этой оценки и из леммы Гронуолла вытекает, что функция  совпадает с функцией . Но тогда и функция  совпадает с функцией . А это и означает, что для обратной задачи 3.1.1 имеет место свойство единственности решений.
Теорема доказана.
Разрешимость обратной задачи 3.1.2.
 Исследование разрешимости обратной задачи 3.1.2 в целом проводится вполне аналогично тому, как проводилось исследование разрешимости обратной задачи 3.1.1 - то есть с помощью метода регуляризации, метода срезок и априорных оценок.
Пусть  есть функция из пространства . Для этой функции выполняется неравенство 

		(3.1.15)

 постоянная  в котором определяется лишь областью  - см. [17],[18].
Положим 

 











 

Определим условия, которые понадобятся ниже:









Теорема 3.1.3.  Пусть выполняются условия

	

	

	

	

	

а также либо условия  и  и условие , либо условия  и  и условие 
, либо условия  и  и условие , либо условия
 и  и условие . Тогда обратная задача 3.1.2 имеет решение {u(x,t),q(t)} такое, что , , , , 

Доказательство. Вновь определим срезывающую функцию , но в этот раз с помощью числа . Для положительного числа  рассмотрим краевую задачу: найти функцию , являющуюся в цилиндре  решением уравнения

		(3.1.16)
 и такую, что для нее выполняются условия (3.1.2) и (3.1.3), а также условие

		(3.1.17)

Используя метод неподвижной точки, теоремы вложения [17], [18] и теорему Шаудера, нетрудно установить, что краевая задача (3.1.16),(3.1.2), (3.1.3), (3.1.17) при фиксированном  и при принадлежности функции  пространству  имеет решение  такое, что будет из пространства
, . 
Покажем, что для функций  имеют место "хорошие" априорные оценки.
Используя технику доказательства теоремы 1, нетрудно получить, что при выполнении одного из условий  или  для функций  выполняется соответствующая оценка

		(3.1.18)
 или

		(3.1.19)

Далее, умножим уравнение (3.1.16) на функцию  и проинтегрируем по пространственным переменным по области  и по временной переменной от 0 до текущей точки. Повторяя выкладки, которые привели к неравенствам (3.1.9) - (3.1.13), получим, что для функций  выполняется одна из оценок

		(3.1.20)

 или

		(3.1.21)

 в зависимости от того, какое из условий  или  выполняется, а также оценка

	(3.1.22)

 постоянная  в которой определяется функциями , и .
Из оценок (3.1.18) и (3.1.20) или (3.1.19) и (3.1.21), а также из неравенства (3.1.15) и условий теоремы следует, что выполняется равенство

	

Используя это равенство, выполняя далее стандартные действия п организации предельного перехода (см. [8]), нетрудно получить, что существует функция , принадлежащая требуемому в теореме классу и являющаяся решением уравнения

	

Это уравнение означает, что функция  и функция , определенная равенством

	

будут связаны в цилиндре  уравнением (3.1.1). Выполнение для функции  условий (3.1.2), (3.1.3) и (3.1.5) очевидны, принадлежность функции  пространству  также очевидна.
Все сказанное выше и означает, что функции  и  дают искомое решение обратной задачи 3.1.2.
Теорема доказана.
Определим множество  как множество функций  таких, что , , 

Теорема 3.1.4.  Пусть выполняются условия

	

	
Тогда любые два решения  и  обратной задачи 3.1.2, принадлежащие множеству , совпадают.


Доказательство. Для разности  функций  и  выполняется уравнение

	

Поскольку решения  и  принадлежат множеству , то от этого уравнения можно перейти к уравнению для функции :

		(3.1.23)

Умножим уравнение (3.1.23) на функцию  и проинтегрируем по  и по временной переменной от 0 до текущей точки. Получим равенство 

	

		(3.1.24)

От равенства (3.1.24) нетрудно перейти к следующей цепочке неравенств (с помощью неравенств Гельдера и Юнга и с учетом принадлежности функции  множеству ): Оценивая правую часть этого равенства с помощью неравенства Гельдера, придем к оценке

	

		(3.1.25)
 
	

число  в последнем неравенстве есть произвольное положительное число, число же  определяется, помимо числа , также числом , функциями  и .
Помимо неравенства (3.1.15), для функций  из пространства  имеет место неравенство

		(3.1.26)

 в котором  вновь есть произвольное положительное число, число же  определяется числом , а также и областью .
Используя (3.1.26), продолжим неравенство (3.1.25):

	

		(3.1.27)
 
	

Подбирая число  малым и фиксируя, затем подбирая число  так, чтобы  оказалось малым, и далее используя лемму Гронуолла, получим, что  есть тождественно нулевая в  функция. Но тогда и функция  будет тождественно нулевой в  функцией. Как уже говорилось при доказательстве теоремы 3.1, это и означает, что для обратной задачи 3.1.2 при выполнении условий теоремы 4 имеет место свойство единственности.
Теорема доказана.
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 Пример к обратной задаче 3.1.1.

Положим , . Зададим 

	

Выберем начальное условие 

	

Положим также правую часть и искомый коэффициент времени постоянными: 
	

Проверим по пунктам условия теоремы 3.1.1.

 1. Регулярность и знак . 
	

(Замечание: , максимум .)

 2. Функции , . 

	

 3. Начальное условие . 

	

Граничные условия для  и  выполняются: в одномерном случае  и , поэтому . Кроме того 

	

 4. Выбор  и проверка условия (а) теоремы (или (б)). 
Берём . Тогда  и . В условии (а) участвует величина 

	

Здесь  и , поэтому . Далее 

	

поэтому . 
Поскольку , то условие (а) теоремы выполнено.

 5. Построение решения и проверка уравнения. 
Возьмём 
	

Тогда , , и уравнение (3.1.1) принимает вид 

	

то есть уравнение выполнено при выбранных . Краевое условие  тоже выполнено (производная нулевая на концах), интегральное условие 

	

выполняется для всех .
 6. Пространственные и регулярностные утверждения. Поскольку  и  — постоянные, имеем 

	

	

 При выбранных данных все условия теоремы 3.1.1 выполнены, и пара 

	

даёт корректное решение обратной задачи 3.1.1, удовлетворяющее всем утверждениям теоремы.
Пример, построенный при выполнении условия (а). Возьмём те же обозначения: , . 
Пусть 

	

Зададим 
	

где параметр  будем выбирать достаточно малым. По построению , краевые условия выполнены, а 

	

Положим правую часть по уравнению: 

	

Проверка ключевого условия (а). Напомним, в (а) появляется величина 

	

Здесь , а 

	

Следовательно (учитывая ) 

	

где константа  зависит только от  и конечных интегралов  (все конечны, так как ). 
Таким образом 

.

Далее в теореме появляется 

	

Поскольку  и , получаем 
	

так что .
Имеем также  и . Тогда левое неравенство (а) сводится к 

	

По оценке  это даёт условие 

	

Следовательно можно обеспечить (а), выбрав сначала фиксированное положительное  (например ), а затем взять . При таком выборе  и требуемое неравенство выполняется.
Все остальные пункты теоремы (регулярность , интегральное условие , гладкость ) выполняются по построению.
При  с  и малом  (при фиксированном ) величина  конечна и мала, поэтому условие (а) теоремы 3.1.1 выполняется. Тем самым мы построили пример, в которой именно вариант (а) теоремы справедлив.



[bookmark: GrindEQpgref68f0ab2c12]4  Обратные задачи по восстановлению параметров в дифференциальном уравнении с кратными характеристиками
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Пусть  - интервал на ,  - прямоугольник  (. Далее, пусть заданы функции  и , определенные при , , а также  и  -заданные действительные числа.

 Обратная задача 4.1.1: найти функцию  и положительное число , связанные в прямоугольнике  уравнением

		(4.1.1)

при выполнении следующих условий для функции :

		(4.1.2)


		(4.1.3)


		(4.1.4)

Обратная задача 4.1.2: найти функцию  и положительное число , связанные в прямоугольнике  уравнением

		(4.1.5)

при выполнении условий (4.1.2) - (4.1.4) для функции .
В обратных задачах 4.1.1. и 4.1.2. условия (4.1.2) и (4.1.3) являются условиями общей начально-краевой задачи для дифференциального уравнения третьего порядка с несколькими характеристиками, а условие (4.1.4) является интегральным условием переопределения, присутствие которого обусловлено наличием дополнительного неизвестного значения коэффициента (параметра).
Дифференциальные уравнения 4.1.1 и 4.1.5 имеют простую модельную форму.
Исследование разрешимости обратной задачи будет проводиться методом, основанным на переходе от исходной задачи к новой задаче для нелинейного интегро-дифференциального уравнения.
Пусть  - заданное положительное число,  - функция, определенная следующим образом 

	

Рассмотрим следующую задачу: найти функцию , которая является решением уравнения в прямоугольнике 

		(4.1.6)

и для которой выполняются условия  4.1.2 и  4.1.3.
В граничной задаче 4.1.6, 4.1.2, 4.1.3, уравнение  4.1.6 является интегро-дифференциальным уравнением, которое в некоторых источниках называют «нагруженным».
Пусть  — число из интервала . Рассмотрим следующее:

	

	

	

	

Теорема 4.1 Пусть выполняются следующие условия: 
	

	

	

	

	
Тогда задача  (3.1.6), (3.1.2), (3.1.3) есть решение  такое, что , , . 

Доказательство. Для числа  введем функцию :

	
Рассмотрим следующую задачу: найти функцию , которая является решением уравнения в прямоугольнике  и удовлетворяет условия  4.1.2 и 4.1.3:

		(

С помощью метода регуляризации, априорных оценок и метода неподвижной точки мы покажем, что у этой задачи есть регулярное решение (то есть решение, имеющие все обобщенные производные С.Л. Соболеву).
Допустим, что  - положительное число. Рассмотрим следующую задачу:  найти функцию , которая является решением уравнения

		(4.1.7)

в области  и для которой выполняются условия (4.1.2) и (4.1.3), а также условие (4.1.8)

		(4.1.8)

Пусть  - множество функций , таких что , , и функция  удовлетворяет условиям (4.1.2), (4.1.3) и (4.1.8). Определим норму функций  следующим образом:

	
Очевидно, что множество  с этой нормой будет гильбертовым пространством.
Для функции  из пространства  рассмотрим следующую задачу: найти функцию , которая является решением уравнения 

		(4.1.9)

и что оно удовлетворяет условиям  (4.1.2), (4.1.3) и (4.1.8). В этой задаче дифференциальное уравнение  (4.1.9) представляет собой линейное параболическое уравнение шестого порядка, а граничные условия  (4.1.3) и (4.1.8) самосопряженны. Следовательно, эта задача разрешима в пространстве  (это можно доказать непосредственно с помощью классического метода Галеркина с выбором специального базиса).
Разрешимость в пространстве  краевой задачи  (4.1.9),  (4.1.2), (4.1.3), (4.1.8) означает, что эта задача порождает оператор , действующий из пространства  и связывающий функцию  из  с решением  краевой задачи (4.1.9),  (4.1.2), (4.1.3), (4.1.8). Докажем, что этот оператор имеет неподвижные точки в пространстве .
Сначала заметим, что для решений краевой задачи  (4.1.9),  (4.1.2), (4.1.3), (4.1.8) существует априорная оценка

		(4.1.10)

где константа  определяется только числами ,  и . Отсюда следует, что оператор  отображает замкнутый шар радиуса  пространства  в себя.
Докажем теперь, что оператор  непрерывен в пространстве .
Пусть  - последовательность функций из пространства , сходящаяся к функции . Если мы положим , , , , то мы получим следующее равенство:

		(4.1.11)

 Так как функция  является функцией Липшица, а неравенство  выполняется, то мы можем получить следующую оценку: 

		(4.1.12)

Повторяя доказательство оценки (4.1.10) для равенства  (4.1.11) и учитывая неравенство  (4.1.12), а также то, что  при  (вследствие сходимости последовательности  в пространстве  к функции ), мы видим, что сходимость  при . И это означает, что оператор  непрерывен везде в пространстве .
Теперь докажем, что оператор  является компактным.
Пусть - произвольная ограниченная последовательность функций из пространства . Так как вложение  является компактным, то из последовательности  следует, что подпоследовательность  сильно сходится в пространстве  к некоторой функции , принадлежащей пространству . Отметим, что ограниченность последовательности  в пространстве  и сильная сходимость последовательности в пространстве  влечет за собой, что последовательность  является фундаментальной в пространстве . Действительно, мы получим следующее равенство:

	
Если мы положим , , , то получим следующее равенство:

	


Повторяя для этого равенства доказательство оценки  (4.1.10) и учитывая фундаментальность последовательностей  и  в пространстве , мы видим, что последовательность  является фундаментальной в пространстве .
Таким образом, из любой последовательности  , ограниченной в пространстве , можно извлечь подпоследовательность  такую, что последовательность  является фундаментальной в пространстве . А это значит, что оператор  является компактным в пространстве .
Все доказанное выше означает, что для оператора  на шаре радиуса  пространства  выполняются все условия теоремы Шаудера. Следовательно, оператор  имеет по крайней мере одну неподвижную точку в пространстве . Очевидно, что эта неподвижная точка будет представлять решение краевой задачи  (4.1.7), (4.1.2), (4.1.3), (4.1.8).
Докажем, что при условиях теоремы для решений  краевой задачи    (4.1.7), (4.1.2), (4.1.3), (4.1.8) существуют априорные оценки, равномерные относительно параметра , которые позволят установить существование решений краевой задачи  (4.1.6), (4.1.2), (4.1.3). Умножим уравнение  (4.1.7) на функцию  и проинтегрируем по прямоугольнику . Применяя формулу интегрирования по частям как слева, так и справа в полученном равенстве, получим первую оценку, равномерную относительно :

		(4.1.13)

На следующем шаге мы умножаем уравнение  (4.1.7) на функцию  и интегрируем по прямоугольнику . Учитывая неравенство  и применяя неравенство Гёльдера, мы получаем, что для решений  задачи с граничными условиями  (4.1.7), (4.1.2), (4.1.3), (4.1.8) выполняется вторая априорная оценка, одинаковое для всех :

		(4.1.14)

Мы должны отметить, что на первом шаге выводится еще одна оценка, равномерная по . 

		(4.1.15)

Наконец, существует очевидная последняя оценка по ,

		(4.1.16)

 где константа  определяется числами , ,  и , устанавливают ограниченность в пространстве  последовательности . Оценки  (4.1.13) - (4.1.16) и свойство рефлексивности гильбертова пространства позволяют, выбрав монотонно убывающую последовательность положительных чисел , перейти к семейству решений граничных задач   (4.1.7), (4.1.2), (4.1.3), (4.1.8) с  к слабо сходящейся подпоследовательности и затем в пределе получить решение  граничной задачи  , (4.1.2), (4.1.3) такое, что для этого решения выполняются оценки  (4.1.13), (4.1.14) и (4.1.16). Для этого решения, в силу неравенства

	


Используя оценки (4.1.13) и (4.1.14), а также условие , мы получим следующую оценку:

	

Таким образом, для найденного решения  краевой задачи  , (4.1.2), (4.1.3) будет выполнено уравнение . Это означает, что найденная функция  будет искомым решением краевой задачи  (4.1.6), (4.1.2), (4.1.3).
Теорема доказана.

Теорема 4.2 Пусть выполняются следующие условия: 

	

	

	

	

	
тогда обратная задача 4.1.1 имеет решение , такое что ,  и .

Доказательство. В задаче  (4.1.6), (4.1.2), (4.1.3) возьмем число  в качестве числа . Согласно Теореме 4.1, эта задача имеет регулярное решение . Определим число  следующим образом: 

		(4.1.17)

Очевидно, что число будет положительным и что число  и функция  связаны в прямоугольнике  уравнением  (4.1.1). Покажем, что функция  удовлетворяет условию переопределения  (4.1.4).
Следствием уравнения (4.1.1) является равенство 

	

Подставив  в эту равенство, затем умножив его на функцию  и проинтегрировав по , мы получаем отношение: 

	

С другой стороны, представление  (4.1.17) дает равенство 

	

Из двух полученных уравнений и положительности числа  мы можем видеть, что для решения  задачи с краевыми условиями  (4.1.6), (4.1.2), (4.1.3) с числом , условие переопределения (4.1.4) выполнено. Следовательно, функция  и число  дают желаемое решение Обратной задачи 4.1.1. Теорема доказана.

Разрешимость обратной задачи 4.1.2.

Мы снова воспользуемся методом, основанным на переходе от рассматриваемой обратной задачи к некоторой прямой задаче для нагруженного нелинейного уравнения.
Пусть  - заданное положительное число,  - функция, для которой выполняются следующие равенства.

	

где функция , определяется следующим образом: 
	

Рассмотрим следующую задачу: найти функцию , которая является решением уравнения 

		(4.1.18)

в прямоугольнике  и такую, что выполняются условия  (4.1.2) и (4.1.3). Эта задача является вспомогательной прямой задачей для наруженного нелинейного уравнения.
Пусть  - число из интервала . Тогда у нас будет следующее: 

	

	

	

	

Теорема 4.3 Пусть выполняются следующие условия 

	

	

	

	

	

	
тогда начально-граничная задача  (4.1.18)), (4.1.2), (4.1.3) есть решение  такое, что , , . 

Доказательство. Пусть  - число , а  - функционал, заданный формулой:

	
Рассмотрим задачу: найти функцию , которая является решением уравнения 
		(4.1.19)

в прямоугольнике  и для которого выполняются условия (4.1.2) и (4.1.3). Повторяя доказательство решаемости задачи ,(4.1.2), (4.1.3), легко показать, что при условиях теоремы эта задача имеет решение  такое, что , . Определим функцию  следующим образом:

	
Так как , то для функции  в прямоугольнике  выполняется уравнение 
		(4.1.20)

и удовлетворяет условия  (4.1.2) и (4.1.3) для функции  в прямоугольнике . Покажем, что для функций  и  будут выполняться необходимые априорные оценки. Умножим уравнение  (??) на функцию  и проинтегрируем по прямоугольнику . После простых преобразований получим оценку:

		(4.1.21)

На следующем шаге мы умножаем уравнение  (4.1.20) на функцию  и интегрируем по прямоугольнику . В результате полученного равенства получаем вторую оценку: 
		(4.1.22)

Затем мы умножаем уравнение (4.1.20) на функцию  и интегрируем по прямоугольнику .
Используя неравенство , применяя неравенство Гёльдера и учитывая оценку  (4.1.21), получаем неравенство:

		(4.1.23)

Неравенства  (4.1.22) и (4.1.23) позволяют оценить :

	

	

		(4.1.24)

Полученная оценка и неравенство  из условий теоремы означают, что неравенство  выполняется, а затем выполняется равенство . Последнее равенство означает, что решение  уравнения  (4.1.20) является решением уравнения 
	
Давайте определим функцию  следующим образом: 
	
Поскольку , функция  будет решением уравнения  (4.1.18). Функция  принадлежит требуемому классу, для нее выполняются условия  (4.1.2) и (4.1.3), а также выполнено неравенство . Теорема доказана.
Мы устанавливаем следующее:

	

Теорема 4.4 Пусть  - положительное число, и все условия Теоремы 3 выполняются для него и для заданной функции  и для числа . Тогда обратная задача 4.1.2 имеет решение  такое, что , , .


Доказательство. Для указанного числа  рассмотрим краевую задачу  (4.1.18),  (4.1.2), (4.1.3). Согласно Теореме 4.3, эта задача имеет решение  такое, что , , . Мы определим число  следующим образом:

		(4.1.25)

Очевидно, что число  и функция  будут связаны в прямоугольнике  уравнением  (4.1.5), и что число  будет положительным. Кроме того, функция  будет удовлетворять условию интегрального переопределения  (4.1.4). Следовательно, решение  краевой задачи(4.1.18),  (4.1.2), (4.1.3) и число, определенное формулой (4.1.25), дают желаемое решение Обратной Задачи 4.1.2.
Теорема доказана. 
[bookmark: GrindEQpgref68f0ab2c14]
  
 Заключение

Данная диссертация посвящена исследованию разрешимости линейных и нелинейных обратных задач для вырождающихся эволюционных уравнений. В ходе исследования были выявлены условия существования и единственности рассматриваемых обратных задач для вырождающихся уравнений, а также использованы алгоритмы и методы их решения.
Важным этапом исследования являлся анализ существующих методов решения обратных задач для вырождающихся уравнений. В работе были рассмотрены различные подходы к решению таких задач, включая методы интегральных уравнений, регуляризацию, апприорных оценок и т.д. Был проведен анализ их преимуществ и недостатков с учетом конкретных особенностей исследуемых уравнений.
Основываясь на результате теоретического анализа, в диссертации были построены примеры вырождающихся уравнений, удовлетворяющих всем условиям теоремы о разрешимости обратных задач. Эти примеры подтверждают применимость разработанных методов и их эффективность в решении практических задач.
По результатам диссертационного исследования опубликовано 13 работ, в том числе:
- 6 статьи в научных журналах включенных в базу данных Clarivate Analytics Journal Citation Reports и/или Scopus.;
- 1 статья в журналах, рекомендованных Комитетом по обеспечению качества в сфере науки и высшего образования Министерства науки и высшего образования Республики Казахстан;
- 6 публикаций в сборнике международных конференций. Полученные результаты:
-доказана разрешимость линейной обратной задачи определения коэффициентов по времени для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
-доказана разрешимость нелинейной обратной задачи определения коэффициентов по времени для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
-доказана разрешимость линейной обратной задачи определения коэффициентов пространственного типа для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
-доказана разрешимость нелинейной обратной задачи определения коэффициентов пространственного типа для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
-доказана единственность решений нелинейной обратной задачи определения коэффициентов пространственного типа для вырождающегося уравнения параболического уравнения с меняющим направлением эволюции.
-доказана разрешимость нелинейной обратной задачи для сильно вырождающегося параболического уравнения.
- доказана единственность решений обратной задачи для сильно вырождающегося параболического уравнения.
Таким образом, результаты данной диссертации имеют научную значимость и представляют собой важный вклад в развитие теории и практики решения обратных задач для вырождающихся уравнений. Дальнейшие исследования в этой области могут быть направлены на расширение классов рассматриваемых уравнений и улучшение методов их решения на основе новых теоретических и практических результатов.
Все результаты, полученные в рамках диссертационного исследования, опубликованы в научных журналах, индексируемых в базе Scopus и ККСОН (см. [31]-[43]).
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