Исследователи Северо-Казахстанского университета имени Манаша Козыбаева разрабатывают программную модель распознавания БПЛА на основе алгоритмов двух типов нейронных сетей, адаптированных в оптический и радиолокационный канал системы «FMCW-радар+видеонаблюдение».
Идея проекта заключается в создании программной модели нейронных сетей, одна из которых предназначена для распознавания БПЛА через радиолокационное изображение микродоплеровских сигнатур благодаря более высокоточной классификации беспилотников и птиц.
Второй сегмент программной модели определяет нейросетевое приложение по распознаванию БПЛА через видеоданные и фото-изображения объектов в воздушном пространстве (коптеры, беспилотные летательные аппараты «летающее крыло», птицы и др.).
Особенность разработки заключается в ее адаптации к радиолокационной системе Антидрон с программно-аппаратной платформой на основе «Радар + оптический канал» как элемента автоматизации распознавания БПЛА по двум каналам детектирования.
Безусловно, работоспособность и эффективность разрабатываемой программной модели зависит от характеристик радиолокационной системы и оптической камеры, поэтому одним из пунктов задач является выбор и обоснование модели Радара и средства видеонаблюдения.
Также в рамках проекта будут представлены математические особенности отражения радиолокационного сигнала от цели с источников вибрации, что определяет доплеровские показатели для распознавания летающих объектов (для БПЛА и птиц). Структурное описание системы Data Fusion, в которую интегрируется разрабатываемая программная модель, характеристики нейросетевых алгоритмов, которые рассматриваются как основа программ для классификации и распознавания в рамках исследования.
Научный проект № АР19679009 Разработка нейросетевой модели распознавания БПЛА через оптико-электронный канал, интегрируемый в систему Data Fusion
Научный руководитель Курмашев И.Г., кандидат технических наук