

Информационные инструменты для авторов и редакторов: Journal Citation Reports и EndNote Online

Дарья Бухтоярова

Специалист Thomson Reuters по обучению и образовательным программам в странах СНГ

8 июля 2016 г.

Journal Citation Reports

Journal Citation Reports

ежегодные отчеты по цитированию журналов в Web of Science Core Collection

BkCI – архив с 2005 IC/CCR – архив с 1840

Импакт-фактор: основной показатель влиятельности научного журнала

THOMSON REUTERS

EndNote Online

Менеджер цитирования

Личная картотека

Совместный доступ

Оформление ссылок

Возможности для авторов

Этапы научной деятельности

Начинаем с текста статьи

Function and interactions of integrins

Integrins are heterodimeric cell adhesion molecules that link the extracellular matrix to the cytoskeleton. The integrin family in man comprises 24 members, which are the result of different combinations of 1 of 18 alpha- and 1 of 8 beta -subunits. Alternative splicing of mRNA of some alpha- and beta -subunits and postranslational modifications of integrin subunits further increase the diversity of the integrin family. In their capacity as adhesion receptors that organize the cytoskeleton, integrins play an important role in controlling various steps in the signaling pathways that regulate processes as diverse as proliferation, differentiation, apoptosis, and cell migration. The intracellular signals that lead to these effects may be transduced via cytoplasmic components, which have been identified as integrin-binding proteins in yeast two-hybrid screens and which could mediate the coupling of integrins to intracellular signaling pathways. In this review an overview is given of the function and ligand-binding properties of integrins as well as of proteins that associate with integrins and may play a role in their signaling function.

Как подобрать журнал для публикации?

Способ 1: <u>Web of Science</u>

Как подобрать журнал для публикации?

Способ 2. Journal Citation Reports

Список журналов по любой научной области в Journal Citation Reports

	Full Journal Title	ISSN	Total Cites	Journal Impact Factor ▼
1	NATURE REVIEWS MOLECULAR CELL BIOLOGY	1471-0072	36,784	38.602
2	NATURE MEDICINE	1078-8956	65,230	30.357
3	CELL	0092-8674	202,467	28.710
4	CANCER CELL	1535-6108	29,149	23.214
5	Cell Stem Cell	1934-5909	18,575	22.387
6	NATURE CELL BIOLOGY	1465-7392	35,807	18.699
7	Cell Metabolism	1550-4131	21,343	17.303

185	CYTOLOGIA	0011-4545	795	0.227
186	JOURNAL OF HISTOTECHNOLOGY	0147-8885	105	0.086
187	BIOLOGICHESKIE MEMBRANY	0233-4755	88	0.081

Средние показатели импакт-фактора по данной области

	Category A	Edition	#Journals	Total Cites	Median Impact Factor	Aggregate Impact Factor
22	BIOTECHNOLOGY & APPLIED MICROBIOLOGY	SCIE	161	1,103,236	2.137	3.343
23	BUSINESS	SSCI	120	347,194	1.417	1.930
24	BUSINESS, FINANCE	SSCI	94	155,831	0.940	1.415
25	CARDIAC & CARDIOVASCULAR SYSTEMS	SCIE	124	817,386	2.186	3.907
26	CELL & TISSUE ENGINEERING	SCIE	21	93,710	3.625	4.671
27	CELL BIOLOGY	SCIE	187	1,901,313	3.181	5.601
28	CHEMISTRY, ANALYTICAL	SCIE	75	736,724	1.951	3.066
29	CHEMISTRY, APPLIED	SCIE	71	460,216	1.385	2.748
30	CHEMISTRY, INORGANIC & NUCLEAR	SCIE	46	427,833	1.759	2.652
31	CHEMISTRY, MEDICINAL	SCIE	59	425,363	2.490	2.714
32	CHEMISTRY, MULTIDISCIPLINARY	SCIE	163	2,825,080	1.798	5.585
33	CHEMISTRY, ORGANIC	SCIE	59	778,262	2.108	3.135
34	CHEMISTRY, PHYSICAL	SCIE	144	2,584,779	2.258	4.639
35	CLINICAL NEUROLOGY	SCIE	192	1,062,167	2.304	3.198

Импакт-фактор – не единственный показатель!

Key In	dicators												
Year 🔻	Total Cites Graph	Journal Impact Factor Graph	Impact Factor Without Journal Self Cites Graph	5 Year Impact Factor Graph	Immediacy Index Graph	Citable Items Graph	Cited Half- Life Graph	Citing Half- Life Graph	Eigenfactor Score Graph	Article Influence Score Graph	% Articles in Citable Items Graph	Normalized Eigenfactor Graph	Average JIF Percentile Graph
2015	21,343	17.303	16.790	17.897	3.353	156	4.6	5.8	0.08897	8.309	82.69	10.11	98.071
2014	18,502	17.565	16.900	17.608	3.629	167	4.5	5.8	0.07919	7.916	80.24	8.86965	97.648
2013	15,636	16.747	16.266	17.878	3.052	153	4.5	5.5	0.07864	8.209	78.43	8.66819	97.368
2012	12,432	14.619	13.966	17.551	3.250	148	4.3	5.2	0.07219	8.169	78.38	Not A	97.088
2011	9,907	13.668	13.025	17.770	2.624	133	3.9	5.6	0.07150	8.606	91.73	Not A	96.761
2010	8,682	18.207	17.659	20.130	2.755	106	3.4	5.5	0.07559	9.366	93.40	Not A	97.528
2009	6,462	17.350	16.836	19.021	2.844	90	2.9	5.3	0.06218	9.165	92.22	Not A	97.280
2008	4,463	16.107	15.515	17.974	3.653	98	2.5	4.7	0.04804	9.506	93.88	Not A	97.123
2007	2,778	17.148	16.604	17.161	2.772	79	2.1	4.8	0.03229	9.320	93.67	Not A	97.422
2006	1,409	16.710	15.869	Not A	3.162	80	1.4	4.5	Not A	Not A	90.00	Not A	97.431
2005	202	Not A	Not A	Not A	2.899	69	0.5	4.3	Not A	Not A	91.30	Not A	0.444

Индекс оперативности – насколько быстро цитируются статьи из данного журнала?

Key In	dicators												
Year 🔻	Total Cites Graph	Journal Impact Factor Graph	Impact Factor Without Journal Self Cites Graph	5 Year Impact Factor Graph	Immediacy Index Graph	Citable Items Graph	Cited Half- Life Graph	Citing Half- Life Graph	Eigenfactor Score Graph	Article Influence Score Graph	% Articles in Citable Items Graph	Normalized Eigenfactor Graph	Average JIF Percentile Graph
2015	21,343	17.303	16.790	17.897	3.353	156	4.6	5.8	0.08897	8.309	82.69	10.11	98.071
2014	18,502	17.565	16.900	17.608	3.629	167	4.5	5.8	0.07919	7.916	80.24	8.86965	97.648
2013	15,636	16.747	16.266	17.878	3.052	153	4.5	5.5	0.07864	8.209	78.43	8.66819	97.368
2012	12,432	14.619	13.966	17.551	3.250	148	4.3	5.2	0.07219	8.169	78.38	Not A	97.088
2011	9,907	13.668	13.025	17.770	2.624	133	3.9	5.6	0.07150	8.606	91.73	Not A	96.761
2010	8,682	18.207	17.659	20.130	2.755	106	3.4	5.5	0.07559	9.366	93.40	Not A	97.528
2009	6,462	17.350	16.836	19.021	2.844	90	2.9	5.3	0.06218	9.165	92.22	Not A	97.280
2008	4,463	16.107	15.515	17.974	3.653	98	2.5	4.7	0.04804	9.506	93.88	Not A	97.123
2007	2,778	17.148	16.604	17.161	2.772	79	2.1	4.8	0.03229	9.320	93.67	Not A	97.422
2006	1,409	16.710	15.869	Not A…	3.162	80	1.4	4.5	Not A	Not A	90.00	Not A	97.431
2005	202	Not A	Not A	Not A	2.899	69	0.5	4.3	Not A…	Not A	91.30	Not A	0.444

Эйгенфактор – кто ссылается на публикации из данного журнала?

Key In	dicators												
Year 🗸	Total Cites Graph	Journal Impact Factor Graph	Impact Factor Without Journal Self Cites Graph	5 Year Impact Factor Graph	Immediacy Index Graph	Citable Items Graph	Cited Half- Life Graph	Citing Half- Life Graph	Eigenfacto Score Graph	Article Influence Score Graph	% Articles in Citable Items Graph	Normalizec Eigenfactor Graph	Average JIF Percentile Graph
2015	21,343	17.303	16.790	17.897	3.353	156	4.6	5.8	0.08897	8.309	82.69	10.11	98.071
2014	18,502	17.565	16.900	17.608	3.629	167	4.5	5.8	0.07919	7.916	80.24	8.86965	97.648
2013	15,636	16.747	16.266	17.878	3.052	153	4.5	5.5	0.07864	8.209	78.43	8.66819	97.368
2012	12,432	14.619	13.966	17.551	3.250	148	4.3	5.2	0.07219	8.169	78.38	Not A	97.088
2011	9,907	13.668	13.025	17.770	2.624	133	3.9	5.6	0.07150	8.606	91.73	Not A	96.761
2010	8,682	18.207	17.659	20.130	2.755	106	3.4	5.5	0.07559	9.366	93.40	Not A	97.528
2009	6,462	17.350	16.836	19.021	2.844	90	2.9	5.3	0.06218	9.165	92.22	Not A	97.280
2008	4,463	16.107	15.515	17.974	3.653	98	2.5	4.7	0.04804	9.506	93.88	Not A	97.123
2007	2,778	17.148	16.604	17.161	2.772	79	2.1	4.8	0.03229	9.320	93.67	Not A	97.422
2006	1,409	16.710	15.869	Not A	3.162	80	1.4	4.5	Not A…	Not A	90.00	Not A	97.431
2005	202	Not A	Not A	Not A	2.899	69	0.5	4.3	Not A…	Not A	91.30	Not A	0.444

Как этот журнал сопоставим с другими журналами?

JCR Im	pact Factor						<i>i</i>
ICP	BIOCHEMISTRY	& MOLECULAR	BIOLOGY	CELL BIOLOGY			
Year -	Rank	Quartile	JIF Percentile	Rank	Quartile	JIF Percentile	
2015	4/289	Q1	98.789	10/187	Q1	94.920	
2014	6/290	Q1	98.103	11/184	Q1	94.293	
2013	5/291	Q1	98.454	9/185	Q1	95.405	
2012	4/290	Q1	98.793	8/185	Q1	95.946	
2011	5/290	Q1	98.448	8/181	Q1	95.856	
2010	6/286	Q1	98.077	8/178	Q1	95.787	
2009	7/283	Q1	97.703	8/162	Q1	95.370	
2008	7/275	Q1	97.636	10/157	Q1	93.949	
2007	8/263	Q1	97.148	10/156	Q1	93.910	
2006	6/262	Q1	97.901	9/156	Q1	94.551	
2005	6/261	Q1	97.893	7/153	Q1	95.752	
2004	4/261	Q1	98.659	6/155	Q1	96.452	
2003	4/261	Q1	98.659	8/156	Q1	95.192	
2002	4/266	Q1	98.684	8/153	Q1	95.098	
2001	8/308	Q1	97.565	8/147	Q1	94.898	
2000	5/310	Q1	98.548	6/147	Q1	96.259	-

Подбираем журнал по нужным параметрам

- Область : молекулярная биология
- Страна издания: страны СНГ
- Импакт-фактор: от 0 до 2

ИЛИ

• Квартиль: Q3, Q4

Compare Selected Journals Add Jou		d Journals to New or E	xisting List	Customize Indicators		
Select All		Full Journal Ti	tle ISSN	Total Cites	Journal Impact Factor ▼	Impact Factor without Journal Se Cites
	1	Acta Naturae	2075-82	420	1.770	1.6
	2	BIOLOGICHESKIE MI	EMBRANY 0233-47	55 88	0.081	0.0

Данные из Journal Citation Reports интегрированы в Web of Science

Сортиров	ать по: Количество	цитирований от г	иаксимального к минима	льному 🗸		Страница 1 из 1196 🕨
🔲 Выбрат	CELL AND TISSU	IE RESEARCH		8	леченных публ	икаций
1 .	Impact Factor 2.948 3.4 2015 5 лет	22			Функция ЭW OF	Анализ результатов "Отчет по цитированию" недоступна. [?] Количество цитирований: 1,056 (из Web of Science Core
	Категория JCR®	Ранг в категории	Квартиль в категории			Collection)
	CELL BIOLOGY	99 из 187	Q3			Показатель использования 🛩
2.	Данные из редакци	ии 2015 Journal Cita	tion Reports®			Количество цитирований: 886 (из Web of Science Core
	Издатель SPRINGER VERLA	G, 175 FIFTH AVE,	NEW YORK, NY 10010		2004	Collection)
	ISSN: 0302-766X					Показатель использования 💙
3.	Область поиска Cell Biology			Закрыть окно	CIN SPINAL-	Количество цитирований: 740 (из Web of Science Core Collection)
ζ	GELL AND TISSUE RE	SEAKCH IOM: 192	2 Выпуск: 3 Стр.: 423-4	Опуоликовано: 1978	1	Показатель использования 🛩

Как подобрать журнал для публикации?

Способ 3: EndNote Match

ENDNOTE [™]	oasic				
My References Collect	8 Journal Matche	s			
	< Edit Manuscript Da	ata Expand All Colla	pse All		
Find the Best Fit Jour	Match Score 	JCR Impact Factor Current Year 5 Year	Journal		Similar Articles
Enter your Manuscri	•	2.948 3.422 2015 5 Year	CELL AND TISSUE RESE/	ARCH	1
*Title:	Top Keyword Rankir	ngs 🕜	JCR Category	Rank in Category	Quartile in Category
Function and interactio	cell		CELL BIOLOGY	99/187	Q3
*Abstract: binding proteins in yea integgrins to intracellu	extracellular matrix beta				
with integrins and may *required	signaling differentiation		Publisher: 233 SPRING ST, NEW YORK ISSN: 0302-766X	c, NY 10013	
References:	integrins		eISSN: 1432-0878		
-Интегрины Including references allows us	proteins	i			
	•	4.706 5.496 2015 5 Year	JOURNAL OF CELL SCIEI	NCE	3
		4.47 4.137 2015 5 Year	MATRIX BIOLOGY		0

В итоге получаем подходящую для нашей статьи подборку журналов

Название журнала 🥃	Импакт-фактор 🕞	Рейтинг 🖵	Квартиль 📼
Cell Biology International	1.6	156	Q4
Cytotheraphy	3.6	79	Q2
Science Signaling	7.3	29	Q1
Biologicheskie Membrany	0.08	187	Q4
Cell and Tissue Research	2.9	99	Q3
Journal of Cell Biology	8.7	22	Q1
Cellular Oncology	3.5	82	Q2
FASEB Journal	5.2	39	Q1
Tissue and Cell	1.2	168	Q4

Переходим на сайт выбранного журнала

Deringer	for Research & Development	» Sign up / Log in	English 🔻	Corporate edition 🔻
Search	Q #			
Home · Contact Us				

Cell and Tissue Research

ISSN: 0302-766X (Print) 1432-0878 (Online)

() » Browse Volumes & Issues

This journal was previously published under other titles (view Journal History)

Description

Cell and Tissue Research presents regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal provides a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Articles emphasize structure-function relationships as revealed by recombinant molecular technologies. Ar ... show all

Browse Volumes & Issues

Latest Articles

Editorial

Andreas Oksche In honour of his ninetieth birthday Klaus Unsicker (July 2016)

Search within this journal

Q

Impact Factor	Available
2.948	1924 - 2016
Volumes	Issues
365	1,344
Articles	Open Access
17,867	180 Articles

Находим инструкции для авторов

Требования по оформлению ссылок

Please use the following style:

Article published in a journal

Subramaniam S, Strelau J, Unsicker K (2003) Growth differentiation factor-15 prevents low potassium-induced cell death of cerebellar granule neurons by differential regulation of Akt and ERK pathways. J Biol Chem 278:8904–8912

An entire book Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Edinburgh

Article published in a book Unsicker K, Suter-Crazzolara C, Krieglstein K (1999) Neurotrophic roles of GDNF and related factors. In: Hefti F (ed) Handbook of experimental pharmacology, vol 134. Neurotrophic factors. Springer, Berlin Heidelberg New York, pp 189–224

Article published online Corley M, Kroll KL (2014) The roles and regulation of Polycomb complexes in neural development. Cell Tissue Res. doi: 10.1007/s00441-014-2011-9

Как оформить ссылки легко и быстро?

ENDNOTE [™]	basic		_		
References Collect	Organize	Format	Match NEW	Options	
uick Search Search for All My References	Ţ	Интегрины Show 25 per	page 🔻		A Page 1 of 2 Go >>
Search			Page Add to group	 Vear	Copy To Quick List Delete Remove from Group Sort by: First Author A to Z Title
y References (644) [Unfiled] (0) Quick List (0) ash (38) Empty		 Albelda, S 	5. M.	1990	INTEGRINS AND OTHER CELL-ADHESION MOLECULES Faseb Journal Added to Library: 05 Jul 2016 Last Updated: 05 Jul 2016 View in Web of Science™+ Source Record, Related Records, Times Cited: 1718
Bibliometrics (22) Cardiac surgery (35) Catalysts (10) Central Asia (11)		Arosarena	a, O. A.	2016	Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas Journal of Cellular Physiology Added to Library: 05 Jul 2016 Last Updated: 05 Jul 2016 View in Web of Science TM + Source Record, Related Records, Times Cited: 0
Green energy (43) 🕌 International econ (21) 🕌 IT (7) 🎎 Kazakh language (11) 🎎 metabolic disorder (10) 🎎		Bergelson	, J. M.	1997	Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 Science Added to Library: 05 Jul 2016 Last Updated: 05 Jul 2016 View in Web of Science TM Source Record, Related Records, Times Cited: 1990
Mobile Language Learning (8) Natural Parks (9) Oli spill (12) Open Access (3) Physics (12) Star energy, (65)		📄 Brooks, P	. C.	1994	INTEGRIN ALPHA(V)BETA(3) ANTAGONISTS PROMOTE TUMOR-REGRESSION BY INDUCING APOPTOSIS OF ANGIOGENIC BLOOD-VESSELS Cell Added to Library: 05 Jul 2016 Last Updated: 05 Jul 2016 View in Web of Science TH + Source Record, Related Records, Times Cited: 1861
Women in science fiction (12)		Brooks, P	. C.	1994	REQUIREMENT OF VASCULAR INTEGRIN ALPHA(V)BETA(3) FOR ANGIOGENESIS Science
Бата; Chen, C. S. Библ Геол Загря Икте Клим			1997		Geometric control of cell life and death Science Added to Library: 05 Jul 2016 Last Updated: 05 Jul 2016 View in Web of Science™→ Source Record, Related Records, Times Cited: 30

Делимся информацией с соавторами

👥 Интегрины	30 🖉	Managa Charing
Miller pullbr	50 💽	manage snaring

Manage Sharing for 'Интегрины'

3 E-mail Addresses

E-mail Address 🕈	Read only	Read & Write		
colleague2@mail.ru	\bigcirc	۲	Edit	Delete
colleague@mail.ru	\bigcirc	۲	Edit	Delete
student@gmail.com	۲		Edit	Delete
Add More				

Delete All

Выбираем нужный нам стиль оформления ссылок: Cell Tissue Research

←	+ → C 🗋 www.myendnoteweb.com/EndNoteWeb.html?func=bibliography&cat=format&					
	Web of Science™	Researche	rID			
		$\cap TE$	тм			
			basic			
	My References	Collect	Organize	Format	Match NEW!	Options
	Bibliography C	Cite While You	ı Write™ Plug-In	Format Paper	Export References	
	Bibliography	У				
	Refe	ferences:	- Интегрины		•	
	Bibliograph	hic style:	Select			Select Favorites
	E .	formati	Catalysis rouay			
	riie	e format.	Catheterization Ca	ardio		
			CCTCVM			
			Cell Calcium			
			Cell Comm and Sig	gnaling		
			Cell Cycle			
			Cell Death Diff			
			Cell Metabolism			
			Cell Proliferation			
			Cell Research			
			Cell Tissue Res			
			Cell Transplantatio	on		
			Cell			
			Cells Tissues Orga	ins		
			Cellular Immunoio	gy		
			Cellular Meleo Die	logu		
			Cellular Piorec Bio	iogy		
			Cellular Phys Bioc	hem		
			22			

Список пристатейной библиографии готов!

- Albelda SM, Buck CA (1990) INTEGRINS AND OTHER CELL-ADHESION MOLECULES. Faseb Journal 4:2868-2880
- Arosarena OA, dela Cadena RA, Denny MF, Bryant E, Barr EW, Thorpe R, Safadi FF (2016) Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas. Journal of Cellular Physiology 231:1761-1770
- Bergelson JM, Cunningham JA, Droguett G, KurtJones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320-1323
- Brooks PC, Clark RAF, Cheresh DA (1994a) REQUIREMENT OF VASCULAR INTEGRIN ALPHA(V)BETA(3) FOR ANGIOGENESIS. Science 264:569-571
- Brooks PC, Montgomery AMP, Rosenfeld M, Reisfeld RA, Hu TH, Klier G, Cheresh DA (1994b) INTEGRIN ALPHA(V)BETA(3) ANTAGONISTS PROMOTE TUMOR-REGRESSION BY INDUCING APOPTOSIS OF ANGIOGENIC BLOOD-VESSELS. Cell 79:1157-1164
- Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425-1428
- Clark EA, Brugge JS (1995) INTEGRINS AND SIGNAL-TRANSDUCTION PATHWAYS-THE ROAD TAKEN, Science 268:233-239
- Gandhi S. Roth BJ (2016) A numerical solution of the mechanical bidomain model. Methods in Biomechanics and Biomedical Engineering 19:1099-1106
- Giancotti FG, Ruoslahti E (1999) Transduction Integrin signaling. Science 285:1028-1032
- Harrison A, Lin S, Pounder N, Mikuni-Takagaki Y (2016) Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics 70:45-52
- Hynes RO (1987) INTEGRINS A FAMILY OF CELL-SURFACE RECEPTORS. Cell 48:549-554
- Hynes RO (1992) INTEGRINS VERSATILITY, MODULATION, AND SIGNALING IN CELL-ADHESION Cell 69:11-25
- Hynes RO (2002) Integrins: Bidirectional, allosteric signaling machines. Cell 110:673-687
- Lawrence MB. Springer TA (1991) LEUKOCYTES ROLL ON A SELECTIN AT PHYSIOLOGICAL FLOW-RATES - DISTINCTION FROM AND PREREQUISITE FOR ADHESION THROUGH INTEGRINS, Cell 65:859-873
- Luo ZY, Wang Q, Lau WB, Lau B, Xu L, Zhao LJ, Yang HL, Feng M, Xuan Y, Yang YF, Lei LZ, Wang CL, Yi T, Zhao X, Wei YQ, Zhou ST (2016) Tumor microenvironment: The culprit for ovarian cancer metastasis? Cancer Letters 377:174-182
- Martin P (1997) Wound healing Aiming for perfect skin regeneration. Science 276:75-81
- Murakami JL, Xu BH, Franco CB, Hu XB, Galli SJ, Weissman IL, Chen CC (2016) Evidence that beta 7 Integrin Regulates Hematopoietic Stem Cell Homing and Engraftment Through Interaction with MAdCAM-1. Stem Cells and Development 25:18-26 Nielsen CT, Rasmussen NS, Heegaard NHH, Jacobsen S (2016) "Kill" the messenger: Targeting
- of cell-derived microparticles in lupus nephritis. Autoimmunity Reviews 15:719-725

- Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: Integrating signals from front to back. Science 302:1704-1709 Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annual Review of Cell and Developmental Biology 12:697-715
- Ruoslahti E, Pierschbacher MD (1987) NEW PERSPECTIVES IN CELL-ADHESION RGD AND INTEGRINS. Science 238:491-497
- Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098-1101
- Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: Identification of signaling domains. Proceedings of the National Academy of Sciences of the United States of America 95:5857-5864
- Shim W, Lee SY, Kim HS, Kim JH (2016) The topographical properties of silica <u>nanoparticle</u> film preserve the <u>osteoblast</u>-like cell characteristics in vitro. Applied Surface Science 376:62-68
- Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504-1508
- Thao MT, Gaillard ER (2016) The glycation of fibronectin by glycolaldehyde and methylglyoxal as a model for aging in Bruch's membrane. Amino Acids 48:1631-1639
- Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology 7:131-142
- Wang N, Butler JP, Ingber DE (1993) MECHANOTRANSDUCTION ACROSS THE CELL-SURFACE AND THROUGH THE CYTOSKELETON. Science 260:1124-1127
- Watson WH, <u>Ritzenthaler</u> JD, Roman J (2016) Lung extracellular matrix and <u>redox</u> regulation. <u>Redox</u> Biology 8:305-315
- Wendling D (2016) The gut in spondyloarthritis. Joint Bone Spine 83:401-405

Оформляем ссылки в тексте статьи с модулем Cite While You Write

...в стиле оформления международного журнала или в стиле ГОСТ!

Hanna Tarant Dana Lawart Deferencer Mailin	Document	ument1 - Microsoft Word
Insert Go to EndNote Edit Criations Go to EndNote Edit Criations C	y There is a serie of the series of the ser	
		······································
Function and inter Integrins are heteroo the cytoskeleton. Th of different combin splicing of mRNA c of integrin suburits [2-4]. In their capac an important role in processes as diverse intracellular signals components, which screens and which c pathways [5-7].	actions of integrins dimeric cell adhesion molecules that link the extracellular matrix to is integrin family in man comprises 24 members, which are the result ations of 1 of 18 alpha - and 1 of 8 beta - subunits [1]. Alternative of some alpha - and beta - subunits and postranslational modifications further increase the diversity of the integrin family ity as adhesion receptors that organize the cytoskelton, integrins play controlling various steps in the signaling pathways that regulate as proliferation, differentiation, apoptosis, and cell migration. The that lead to these effects may be transduced via cytoplasmic have been identified as integrin-binding proteins in yeast two-hybrid ould mediate the coupling of integrins to intracellular signaling EndNote Styles Name Glycobiology GOST - Appear ance-Order GOST - Numeric Gov Info Quarterly Governance Government Oppos Grafes Arch Clin Exp Ophthalmol Graphene Graphical Models OK Cancel Showing 3811 styles from EndNote	 Kang N, Butler J, P., Ingber D, E. MECHANOTRANSDUCTION ACROSS THE CELL SURFACE AND THROUGH THE CYTOSKELETON//Science 1993 T. 260, NS 111 C. 1124-1127. Shooks P, C., Montgomery A, M. P., Rosenfeld M,, Reisfeld R, A., Hu T, H., Klier G, Cheresh D, A. INTEGRIN ALPHA(V)BETA(3) ANTAGONISTS PROMOTE TUMOR REGRESSION BY INDUCING RAPOPTOSIS CO FANGIOGENIC BLOOD-VESSELS/Cell – 1994 T. 79, No 7 C. 1157-1164. Rosoka RJ, C. Montgomeratal Biology 1996 T. 12 C. 697-715. Watson W. H., Ritzenthaler J. D., Roman J. Lung extracellular matrix and redox galation // Redox Biology 2016 T. 82 - C. 305-315. Arosarena O. A., dela Cadena R. A., Denny M. F., Bryant E, Barr E. W., Hotpe R., Safdi F, F. Ostecacitivin Promotes Migration of Oral Squamous Cell Carcinomas // Journal of Cellular Physiology 2016 T. 231, Ne 8 C. 1761-1770. Chen C. S., Mrksich M, Huang S, Whiteidse G. M., Ingber D. E. Geometric control cell first and death // Science 1997 T. 276, Ne 5317 C. 1425-1428. Teiteibaum S. L. Boneresorption by osteoclasts // Science 2000 T. 289, Ne 5484.

Итог: путь от текста статьи до **публикации** статьи в журнале с импакт-фактором

Function and interactions of integrins

Integrins are heterodimeric cell adhesion molecules that link the extracellular matrix to the cytoskeleton. The integrin family in man comprises 24 members, which are the result of different combinations of 1 of 18 alpha- and 1 of 8 beta -subunits. Alternative splicing of mRNA of some alpha- and beta -subunits and postranslational modifications of integrin subunits further increase the diversity of the integrin family. In their capacity as adhesion receptors that organize the cytoskeleton, integrins play an important role in controlling various steps in the signaling pathways that regulate processes as diverse as proliferation, differentiation, apoptosis, and cell migration. The intracellular signals that lead to these effects may be transduced via cytoplasmic components, which have been identified as integrins to intracellular signaling pathways. In this review an overview is given of the function and ligand-binding properties of integrins as well as of proteins that associate with integrins and may play a role in their signaling function.

Дополнительные возможности для редакторов

Кто ссылается на интересующий нас журнал?

На кого ссылаются авторы, публикующиеся в данном журнале?

Добавление стиля оформления ссылок в EndNote Online

webofscience.com

my.endnote.com

youtube.com/woktrainingsrussian

ipstrainingsrussia@thomsonreuters.com

Рақмет!

Дарья Бухтоярова

Специалист Thomson Reuters по обучению и образовательным программам в странах СНГ

8 июля 2016 г.

