Search Results: 47121
Нелинейная аппроксимация и поперечники функциональных компактов переменной гладкости и восстановление классов операторов
Full Name of the work head: Кальменов Т.Ш.
Исполнители проекта: Базарханов Д.Б.*
: Институт математики и математического моделирования
Inventory number: 0214РК01540
Registration number: 0112РК00603
Keywords: функциональные пространства аппроксимация функциональные компакты восстановление классов операторов всплеск Мейера поперечники приближение функций
Исследованы развитие теории функциональных пространств переменной гладкости, аппроксимативные свойства и поперечники функциональных компактов переменной гладкости. Построены и исследованы методы приближенного восстановления классов операторов на этих функциональных компактах. Найден порядок приближения классов Никольского, Бесова тригонометрическими полиномами и М-членного приближения в пространстве со смешанной нормой. Установлены точные в смысле порядка оценки наилучших N-членных приближений функций из классов типа Никольского-Бесова и Лизоркина-Трибеля по кратной системе всплесков Мейера в метрике. Изучены приближение функций и восстановление операторов на классах Никольского-Бесова и Лизоркина-Трибеля периодических функций смешанной гладкости частными суммами из ряда Фурье по безусловному базису всплесков.*
Математические модели тепловых и электрофизических процессов в электрических аппаратах
Full Name of the work head: Кальменов Т.Ш.
Исполнители проекта: Харин С.Н.*
: Институт математики и математического моделирования
Inventory number: 0214РК01541
Registration number: 0112РК00839
Keywords: математические модели динамика тепловых процессов динамика электрофизических процессов электрические аппараты уравнения эволюции дугового разряда задача Стефана ряды
Получена основная система уравнений, описывающая эволюцию дугового разряда. Разработаны критерии замены отдельных уравнений экспериментальными осциллограммами. Приведены условия корректности гибридной модели. Разработана математическая модель преддуговых процессов в контактах и в жидкометаллическом мостике. Проведен расчет влияния продолжительности мостиковой стадии размыкания на продолжительность существования металлической фазы короткой дуги. Проведена оценка особенностей трансформации дуги в тлеющий разряд в зависимости от параметров цепи и условий коммутации, критерии стабильности такой трансформации. Разработан метод расчета динамики переноса материала и итерационный метод для расчета коэффициента теплоемкости и теплопроводности материалов. Получены априорные оценки решения прямой и сопряженной задачи, аналитическое решение двухфазной задачи Стефана с заданным тепловым потоком, которое найдено в виде рядов по функциям Хартри, рекурентные формулы для вычисления коэффициентов этих рядов, сходимость которых доказана.*
Моделирование турбулентных процессов на основе осредненных уравнений Навье-Стокса (LES, RANS)
Full Name of the work head: Данаев Н.Т.
Исполнители проекта: Абдибеков У.С.*
: Научно-исследовательский институт математики и механики при КазНУ им. аль-Фараби
Inventory number: 0214РК01564
Registration number: 0112РК01502
Keywords: математическое моделирование проблема бенчмарка турбулентные процессы уравнение Навье-Стокса метод крупных вихрей подсеточная модель фильтр Фурье
Разработаны математические модели изотропной турбулентности, построенные на основе метода крупных вихрей. Исследован процесс естественной конвекции в замкнутом пространстве. Представлен анализ полученных результатов реализации задачи (бенчмарка) естественной конвекции в замкнутом пространстве. На основе решения трехмерного уравнения Навье-Стокса, уравнения неразрывности, уравнения Максвелла и закона Ома для движущихся сред произведено численное моделирование вырождения МГД-турбулентности. Определена закономерность взаимного влияния кинетической и магнитной энергии для жидкостей с разными электропроводящими свойствами.*
Непрерывные и дискретные модели многофазных дисперсных систем и их приложения
Full Name of the work head: Кальменов Т.Ш.
Исполнители проекта: Аманбаев Т.Р.*
: Институт математики и математического моделирования
Inventory number: 0214РК01594
Registration number: 0112РК00610
Keywords: многофазная дисперсная система фильтрация суспензия анизотропная среда закон Гука краевые задачи осаждение частиц теория упругости
Исследованы процессы фильтрации и осаждения в многофазных дисперсных системах, нестационарного течения двухфазных сред в открытых каналах с учетом фильтрации воды и осаждения твердых частиц, методы решения краевых задач теории упругости неоднородной анизотропной среды. Разработана математическая модель нестационарного течения двухфазных сред в открытых каналах с учетом фильтрации воды и осаждения твердых частиц. Впервые исследованы предельные режимы фильтрации суспензии в гравитационном поле. Разработаны новые методы решения краевых задач теории упругости неоднородной анизотропной среды.*
Непрерывные и дискретные операторы основных технологических процессов
Full Name of the work head: Кальменов Т.Ш.
Исполнители проекта: Исмаилов Б.Р.*
: Институт математики и математического моделирования
Inventory number: 0214РК01595
Registration number: 0112РК00615
Keywords: технологические процессы операторы математическая модель численные методы кинетическое уравнение процессы гидродинамики операторные уравнения
Разработаны новые математические модели ряда технологических процессов гидродинамики в многоступенчатых каналах при диспергировании жидкости на капли, экстракции из полидисперсного растительного сырья, адсорбции углекислого газа из воздуха, агрегации групп. Они представлены в виде непрерывных и дискретных операторов, для них исследована разрешимость соответствующих уравнений, получены условия разрешимости, оценки погрешности численных алгоритмов и порядка аппроксимации соответствующих операторов. Формализация уравнений гидродинамики и тепло- массообмена в виде операторных позволяет повысить точность расчета технологических процессов.*
Построение стохастических дифференциальных систем устойчивого программного движения и качественный анализ зависимости систем от параметров
Full Name of the work head: Кальменов Т.Ш.
Исполнители проекта: Тлеубергенов М.И.*
: Институт математики и математического моделирования
Inventory number: 0214РК01601
Registration number: 0112РК00836
Keywords: дифференциальные уравнения устойчивость уравнения стохастические обратные задачи динамические системы бифуркация экспоненциальная разделенность
Исследованы дифференциальные и разностные уравнения, динамические системы. Решены три основных обратных задач стохастических дифференциальных систем с вырождающейся диффузией, обладающих заданным интегральным многообразием. Построены по заданным свойствам движения стохастические уравнения в форме Гамильтона и Биркгофа, решена стохастическая задача Гельмгольца с вырожденным лагранжианом. Методом функций Ляпунова получены достаточные условия устойчивости по вероятности интегрального многообразия дифференциального уравнения Ито первого порядка. Выявлено свойство конвергентности программного многообразия систем прямого и непрямого управления. Исследовано существование М-параметрических центральных многообразий (M>1) в разностных динамических системах с неаналитическими нелинейностями в банаховом пространстве. Разработан метод сведения дискретной многомерной динамической системы к одномерной. Введены обобщенные индексы экспоненциальной разделенности.*
Динамические системы в геометрии и математической физике
Full Name of the work head: Кальменов Т.Ш.
Исполнители проекта: Тайманов И.А.*
: Институт математики и математического моделирования
Inventory number: 0214РК01607
Registration number: 0112РК02218
Keywords: вычислительная топология дискретные функции двумерные операторы Шредингера разностные операторы дифференциальные операторы правоинвариантная метрика субриманова задача
Рассмотрена субриманова задача группы Ли SOLV+ с правоинвариантным распределением. Описан алгоритм вычисления основных топологических характеристик трехмерных тел, основанный на дискретизации теории Морса и использующий дискретные аналоги гладких функций, имеющих только невырожденные (морсовские) и простейшие вырожденные критические точки. Получены уравнения, эквивалентные уравнениям Кричевера-Новикова на дискретную динамику параметров Тюрина. С помощью этих уравнений построены примеры операторов, отвечающих спектральным кривым произвольного рода. Найдена система дифференциальных уравнений для уравнений геодезических на группе Ли SOLV+ с правоинвариантным распределением и левоинвариантной метрикой. С помощью первых интегралов доказана интегрируемость этой системы.*
Краевые задачи и их спектральные свойства для уравнений гиперболического, параболического, смешанного и смешанно-составного типов
Full Name of the work head: Кальменов Т.Ш.
Исполнители проекта: Садыбеков М.А.*
: Институт математики и математического моделирования
Inventory number: 0214РК01608
Registration number: 0112РК00604
Keywords: краевые задачи базис Рисса собственные функции присоединенные функции спектральные свойства уравнения дифференциальные операторы дифференциальные дробная производная уравнение теплопроводности
Исследованы разрешимость и спектральные свойства краевых задач для дифференциальных операторов. Доказана базисность Рисса системы корневых векторов периодических краевых задач для обыкновенного дифференциального оператора Штурма-Лиувилля с симметричным потенциалом. Построены новые корректные нелокальные краевые задачи для уравнения Пуассона в шаре, являющихся многомерными аналогами периодических краевых задач. Доказана корректность начально-краевых задач для эволюционных уравнений с неусиленно регулярными краевыми условиями по пространственной переменной. Исследованы новые краевые задачи для волнового уравнения дробного порядка и для уравнения теплопроводности дробного порядка. В терминах углов подхода эллиптической части границы области к линии изменения типа уравнения найден критерий сильной разрешимости задачи Неймана-Трикоми для уравнения Лаврентьева-Бицадзе в пространстве Lp.*
Теоретические основы, конструирование и численный анализ алгоритмов обработки цифровой информации
Full Name of the work head: Кальменов Т.Ш.
Исполнители проекта: Садыбеков М.А.*
: Институт математики и математического моделирования
Inventory number: 0214РК01609
Registration number: 0112РК00829
Keywords: теория всплесков дискретные сигналы изображение тригонометрический полином обработка цифровой информации алгоритмы решения массив информации оператор информации поперечники
Для дискретных сигналов и изображений специальных классов найдены оптимальный (в смысле поперечников Фурье) конечномерный линейный, конечнопараметрический нелинейный (наилучший N-членный) приближенные методы представления с сопутствующими точными порядковыми оценками. Получены конечномерные линейные приближенные методы представления непрерывных сигналов и изображений из некоторых специальных классов с помощью спектральных разложений и относительно различных систем сплайн-всплесков. Для непрерывных сигналов и изображений из некоторых специальных классов получены точные представления в подходящем пространстве Лоренца-Зигмунда по ортоподобной системе с условиями принадлежности этому пространству в терминах коэффициентов указанных представлений. Установлено неравенство разных метрик для полиномов по ортоподобной системе в пространстве Лебега. Найдены оценки сверху наилучшего приближения класса типа Никольского-Бесова полиномами по счетной ортоподобной системе, в пространстве Лебега, оптимальные нелинейные алгоритмы приближенного представления. Созданы тестовые программы для проведения вычислительных экспериментов. Рассмотрено разложение функции двух переменных по произведениям двух счетных ортоподобных систем.*
Обобщенные аналитические векторы и их приложения, разрешимость солитонных нелинейных уравнений размерности (1+1)
Full Name of the work head: Кальменов Т.Ш.
Исполнители проекта: Блиев Н.К.*
: Институт математики и математического моделирования
Inventory number: 0214РК01610
Registration number: 0112РК00830
Keywords: обобщенные голоморфные векторы обобщенные аналитические векторы сингулярные интегральные операторы нормальность нетеровость солитнные решения
Исследованы разрешимость дифференциальных уравнений для обобщенных голоморфных векторов (ОГВ) и обобщенных аналитических векторов (ОАВ) и краевых задач в пространствах Бесова, вложенных в класс непрерывных функций. Обоснована разрешимость однородного и неоднородного скалярных уравнений Бельтрами в рассматриваемых пространствах Бесова. Получены обобщенные интегралы типа Коши для ОГВ и ОАВ и формулы их граничных значений, обобщающие классические формулы Сохоцкого-Племеля для аналитических функций комплексной переменной. Эти формулы существенны для изучения разрешимости краевых задач. Получены условия разрешимости краевых задач Гильберта и Римана-Гильберта для ОАВ, формулы индекса в пространствах Бесова. Рассмотрены солитонные решения нелинейных дифференциальных уравнений математической физики размерности (1+1) и (2+1). Дано геометрическое описание модельных космологических уравнений в пространстве времени с искривленной кривизной, для одного канонического уравнения построено точное солитонное решение. Для обобщенного уравнения Ландау-Липшица получена поверхность, описывающая решение доменной стенки. Построены солитонные решения различных вариантов нелинейных дифференциальных уравнений типа Шредингера.*